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Does Sharing Housework Really

Lead to Divorce?

JEN DOLL

FLICKR/ANTHONY PANG

There's a study in the news that's bound to get a bunch of

people talking (Drudge tweeted it this morning, for

instance, with more than 100 retweets). Whether those

people are for or against its pronouncements, it seems to

fly in the face of what we thought we knew about marriage,

gender equality, and the way modern, successful

relationships work. In a piece written by Henry Samuel for

the Telegraph, he explains, "In what appears to be a slap in
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Causality vs. Association



Another Example



• Connection between causal structure and statistical 
data under suitable assumptions 

• Note this “irrelevance”: 

If there is no common cause of X and Y, the generating 
process for cause X is irrelevant to (“independent” from) 
that generates effect Y from X

What Information Helps Find Causality?

rain

wet_ground
slippery

- conditional independence among variables;
- independent noise condition;
- minimal (and independent) changes…



Causal Sufficiency

• A set of random variables V is causally 
sufficient if V contains every common 
cause (with respect to V) of any pair of 
variables in V

• V = {X,Y,Z}: causally sufficient

• V = {X,Y}: causally insufficient  

• Methods exist in causally insufficient 
cases, e.g., FCI (Chapter 6 of the SGS 
book)

X Y

Z

SGS Book, Chapter 5 (for causally sufficient structures); Chapter 6 (without causal sufficiency)



V-Structures

cold winter snow

slippery 

Why so interesting?



We can See CI Relations 
from DAGs...

• Local Markov condition

• Global Markov condition

• d-separation implies conditional independence:

P (V), where V denotes the set of variables, obeys the global Markov con-
dition (or property) according to DAG G if for any disjoint subsets of variables
X, Y, and Z, we have

X and Y are d-separated by Z in G =) X ?? Y |Z.



Going from CI to Graph?

• Contrapositive:

• Conditional dependence implies d-connection

• What if variables are conditionally independent?

• Can we recover the property of the underlying graph from 
CI relations with Markov condition?

• Arbitrary P(V) would satisfy the global Markov condition 
according to Gf in which there is an edge between each pair of 
variables: trivial !

• Under what assumptions can we have CI ⇒ d-separation?

X and Y are d-separated by Z in G =) X ?? Y |Z.



Causal Structure vs. Statistical Independence 
(SGS, et al.)

causal structure
(causal graph)
 Y → X → Z

Statistical 
independence(s)

 Y      Z | X

Causal Markov condition: each variable is ind. of its non-
descendants (non-effects) conditional on its parents (direct causes)

Faithfulness: all observed (conditional) independencies 
are entailed by Markov condition in the causal graph

Recall: Y⫫Z ⇔P(Y|Z)=P(Y); Y⫫Z|X ⇔P(Y|Z,X)=P(Y|X)

 Y -- X -- Z ?



Constraint-Based vs. Score-Based
• Constraint-based methods

• Score-based methods

 X1       X2      X3     X4  
------------- 

-1.1   1.0     1.3  0.2         
2.1   2.0    3.1     -1.3          
3.1  4.2     2.6   0.6 
 2.3    -0.6    -3.5   0.8 
1.3   2.2     0.9   2.4          

-1.8    0.9    -1.3    0.9  
...       ...      ...       ...

X1⫫X3 

X1⫫X4 | X2 

X3⫫X4 | X2

X1 X3

X2

X4

X1 X3

X2

X4

X1 X3X2 X4

X1 X3X2 X4

score 1

score 2

score 3
...

...

Which 
one is 

the best?

(Score may be BIC, AIC, etc.)
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3.1  4.2     2.6   0.6 
 2.3    -0.6    -3.5   0.8 
1.3   2.2     0.9   2.4          

-1.8    0.9    -1.3    0.9  
...       ...      ...       ...



Constraint-Based vs. Score-Based
• Constraint-based methods

• Score-based methods
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Which 
one is 

the best?

(Score may be BIC, AIC, etc.)
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Discussion

• First, can we find the skeleton of the 
causal structure? If yes, how?

• Second, can we determine the causal 
direction?

Causal Markov condition + faithfulness

How?



Constraint-Based Causal Discovery: Big 
Picture

 X1      X2      X3     X4  
——————  

-1.1    1.0      1.3    0.2  
 2.1   2.0       3.1 -1.3  
3.1   4.2      2.6     0.6 
2.3   -0.6    -3.5    0.8 
1.3   2.2       0.9   2.4 
-1.8    0.9     -1.3    0.9  
...       ...      ...       ...

X1⫫X3 

X1⫫X4 | X2 

X3⫫X4 | X2

X1 X3

X2

X4

- Make use of conditional independence constraints
- Rely on causal Markov condition + faithfulness assumption



Constraint-Based Causal Discovery
• (Conditional) independence constraints 
⇒ candidate causal structures

• Relies on causal Markov condition & 
faithfulness assumption

• PC algorithm (Spirtes & Glymour, 1991)

• Step 1: X and Y are adjacent iff they are 
dependent conditional on every subset of the 
remaining variables (SGS, 1990)

• Step 2: Orientation propagation

• v-structure 

• Markov equivalence class, represented by 
a pattern

• same adjacencies; → if all agree on 
orientation; ⎯ if disagree

Y⫫Z | X

Y      Z 

X

Y Z

X

Y Z

X

Y Z

X

Y Z

X

Y Z

generating

inferring

Y⎯X⎯Z 3 possibilities:



Example I
Step 1: finding skeleton

X1

X2
X3 X4

Causal  
Graph

Independcies 
 

Begin with:

From

X1

X2

X3 X4

X1 X2

X1 X4 {X3}

X2 X4 {X3}

X1
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X3 X4
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X3 X4
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X3 X4

From
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 X4  X3 

 X2 
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 X4  X3 

 X2 

 X1 

PAG Pattern 

 X4  X3 

 X2 

 X1 

X1⫫X2 :

Step 1I:  finding v-structure and 
doing orientation propagation
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PC 
Algorithm

Discovery Algorithms for Causally Sufficient Structures 117

each, to determine the conditional independence of two variables on the set of all remaining
variables requires considering the relations among the frequencies of 335 distinct states, only a
fraction of which will be instantiated even in very large samples.

We should like an algorithm that has the same input/output relations as the SGS procedure for
faithful distributions but which for sparse graphs does not require the testing of higher order
independence relations in the discrete case, and in any case requires testing as few d-separation
relations as possible. The following procedure (Spirtes, Glymour, and Scheines, 1991) starts
by forming the complete undirected graph, then "thins" that graph by removing edges with zero
order conditional independence relations, thins again with first order conditional independence
relations, and so on. The set of variables conditioned on need only be a subset of the set of
variables adjacent to one or the other of the variables conditioned.

Let Adjacencies(C,A) be the set of vertices adjacent to A in directed acyclic graph C. (In the
algorithm, the graph C is continually updated, so Adjacencies(C,A) is constantly changing as
the algorithm progresses.)

PC Algorithm:

A.) Form the complete undirected graph C on the vertex set V.
B.)

n = 0.
repeat

repeat
select an ordered pair of variables X  and Y  that are adjacent in C such
that Adjacencies(C,X )\{Y} has cardinality greater than or equal to
n, and a subset S  of Adjacencies(C,X )\{Y} of cardinality n, and if
X  and Y  are d-separated given S  delete edge X  - Y  from C and
record S  in Sepset(X ,Y ) and Sepset(Y ,X );

until all ordered pairs of adjacent variables X  and Y  such that
Adjacencies(C,X )\{Y} has cardinality greater than or equal to n and all
subsets S  of Adjacencies(C,X )\{Y} of cardinality n have been tested for
d-separation;
n = n + 1;

until for each ordered pair of adjacent vertices X , Y , Adjacencies(C,X )\{Y} is
of cardinality less than n.

118 Causation, Prediction, and Search

C.) For each triple of vertices X , Y , Z such that the pair X , Y  and the pair Y , Z are each
adjacent in C but the pair X , Z are not adjacent in C, orient X  - Y  - Z as X  -> Y  <- Z if
and only if Y  is not in Sepset(X ,Z).
D. repeat

If A -> B, B and C are adjacent, A and C are not adjacent, and there is no
arrowhead at B, then orient B - C as B -> C.
If there is a directed path from A to B, and an edge between A and B, then orient
A - B as A -> B.

     until no more edges can be oriented.

Figure 1 traces the operation of the first two parts of the PC algorithm:

A B

C

D

E

True Graph

A B

C

D

E

Complete Undirected Graph

No zero order independenciesn = 0

A B

C

D

E

n = 2:     Second order independencies

n = 1      First order independencies

        A      C    B        |

A B

C

D

E

        A      E    B        |

        A       D   B        | 

          C       D    B        |

        B      E         
  
{C,D}|

Resulting Adjacencies

Resulting Adjacencies

Figure 1

Test for (conditional) 
independence with an 

increased cardinality of the 
conditioning set

Finding V-
structures

Y

X Z

Orientation propagation

Avoid spurious v-structures: Away from cycles:

*（supplementary）



(Independence) Equivalent 
Classes: Patterns

• Two DAGs are (independence) equivalent if and only if they have the 
same skeletons and the same v-structures (Verma & Pearl, 1991) 

• Patterns or CPDAG (Completed Partially Directed Acyclic Graph): 
graphical representation of (conditional) independence equivalence 
among models with no latent common causes (i.e., causally sufficient 
models)

 X2 X1

 X2 X1

 X2 X1

 X4 X3

 X2
 X1

Possible Edges ExampleX1 and X2 are not adjacent in any 
member of the equivalent class

X1→X2 in every member of the 
equivalent class

X1→X2 in some members of the 
equivalent class, and X1←X2 in 

some others
How many DAGs 

in this class?



Demonstration with Tetrad

• To see the finite sample size effect, we generate linear-
Gaussian data according to the graph with T = 50 & 1000

118 Causation, Prediction, and Search
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• 8 variables of 250 skeletons collected from different locations

• Different dimensions (from 1 to 255) with nonlinear dependence 

• By PC algorithm + kernel-based conditional independence test 
(Zhang et al., 2011)

1. gender (1D) 2. cranial size (1D) 3. diet (5D)

4. paramasticatory 
behavior (5D)

5. level of attrition (2D)

6. population history 
represented by 

geodistance (3D)

7. climate (6D) 8. cranial shape 
differentiation 

(255D)

reported

Example I: Result on the Archeology Data
Thanks to collaborator Marlijn Noback



Example II: College Plans

Sewell and Shah (1968) studied five variables from a sample of 
10,318 Wisconsin high school seniors. 
SEX                         [male = 0, female = 1]
IQ = Intelligence Quotient [lowest = 0, highest = 3] 
CP = college plans           [yes = 0, no = 1] 
PE = parental encouragement [low = 0, high = 1]
SES = socioeconomic status [lowest = 0, highest = 3]



Dealing with Confounders?

X1 ?? X2;

X1 ?? X4 |X3;

X2 ?? X4 |X3.

Possible to have confounders 
behind X3 and X4? :-)

X1 X2

X3

X4

E.g., X1: Raining; X3: wet ground; X4: slippery.

Example I

Example II
X1 ?? X3;

X1 ?? X4;

X2 ?? X3.

Are there confounders 
behind X2 and X4? X1 → X2          X4←X3

L

E.g., X1: I am not sick; X2: I am in this lecture room; X4: you 
are in this lecture room; X3: you are not sick.

C

(See the FCI algorithm)



I know There Is No 
Confounder: Example

• In the 1970s, the Edison Electric Company in North Carolina was concerned about 
the effects on plant growth of acid rain produced by emissions from its electric 
generators.

• The investigators chose samples from the Cape Fear estuary, where the Cape Fear 
River flows into the Atlantic Ocean.

• obtained 45 samples of Spartina grass up and down the estuary, and measured 13 
variables in the samples, including concentrations of various minerals, acidity 
(pH), salinity, and the outcome variable, the biomass of each sample

• The PC algorithm found that among the measured variables the only direct 
cause of biomass was pH.

• Y-structure: no confounder!

• Later verified by intervention-based analysis

PH

Biomass

…

*



I know There must 
Be Confounder

• X1: I am not sick; X2: I am in class; X4: you are in 
class; X3: you are not sick

• X1: European/South American country; X2: leading 
in science; X4: Chocolate consumption; X3: meat 
supply per person

World map of chocolate consumption

X1 → X2          X4←X3

L*



Example II…

X1 → X2          X4←X3

L
L: a latent variable

- There must exist some confounder for X2 and X4.

- In the presence of latent variables, the causal process over measured 
variables O is not necessarily a DAG. How can we represent 
(independence) equivalence classes over O ?

X1 ?? X3;

X1 ?? X4;

X2 ?? X3.

*



Remember the Output of PC? 
(Independence) Equivalent Classes: Patterns
• Two DAGs are (independence) equivalent if and only if they have the 

same skeletons and the same v-structures (Verma & Pearl, 1991) 

• Patterns or CPDAG (Completed Partially Directed Acyclic Graph): 
graphical representation of (conditional) independence equivalence 
among models with no latent common causes (i.e., causally sufficient 
models)

 X2 X1

 X2 X1

 X2 X1

 X4 X3

 X2
 X1

Possible Edges ExampleX1 and X2 are not adjacent in any 
member of the equivalent class

X1→X2 in every member of the 
equivalent class

X1→X2 in some members of the 
equivalent class, and X1←X2 in 

some others
How many DAGs 

in this class?



PAGs: What Edges Mean?

 X2 X1

 X2 X1

 X2 X1

 X2  There is a latent common
cause of X1 and X2

 No set d-separates X2 and X1

 X1 is a cause of X2

 X2 is not an ancestor of X1

 X1

 X2 X1  X1 and X2 are not adjacent

 X2

 X3

 X1

 X2

 X3

Represents

PAG

 X1  X2

 X3

 X1

 X2

 X3

 T1

 X1

 X2

 X3

 X1

 etc.

 T1

 T1  T2



FCI (Fast Causal Inference) 
Allows Confounders

X1 → X2          X4←X3

L

• Assume the distribution over measured variables O is the marginal of a 
distribution satisfying the Markov and faithfulness conditions for the 
true graph

• Results represented by PAGs (Partial Ancestral Graphs)

What’s FCI’s output?

Spirtes et al., Causal inference in the presence of latent variables and selection bias, 1997

Data available in 
‘Illust_FCI_4variables.txt’



Constraint-Based vs. Score-Based
• Constraint-based methods

• Score-based methods

 X1     X2    X3     X4  
------------- 

-1.1    1.0    1.3    
0.2  

2.1    2.0    3.1    
-1.3   

3.1    4.2    
2.6    0.6  

2.3    -0.6   
 -3.5    0.8 

X1⫫X3 

X1⫫X4 | X2 

X3⫫X4 | X2

X1 X3

X2

X4

X1 X3

X2

X4

X1 X3X2 X4

X1 X3X2 X4

score 1

score 2

score 3
...

...

Which 
one is 

the best?

(Score may be BIC, AIC, etc.)

 X1       X2      X3     X4  
------------- 

-1.1   1.0     1.3  0.2         
2.1   2.0    3.1     -1.3          
3.1  4.2     2.6   0.6 
 2.3    -0.6    -3.5   0.8 
1.3   2.2     0.9   2.4          

-1.8    0.9    -1.3    0.9  
...       ...      ...       ...



Why Is It Possible?

- Increases the number of 
parameters to be fitted;  

Wrong assumptions about 
causality and domain 
structure

A E B 

S 

Adding an arc

- Cannot be compensated by 
accurate fitting of parameters;  
 
Also misses causality and 
domain structure

A E B 

S 

Missing an arc

A E B 

S 

“True” structure



Score-Based Learning
• Score: evaluates how well a structure matches the data 

+ how simple the structure is

• Search for a structure that maximizes (or minimizes) 
the score

E B 

A 

E 

A 

B 

E 

B 
A 

E, B, A 
<Y,N,N> 
<Y,Y,Y> 
<N,Y,Y> 
    . 
    . 
<N,N,N> 



GES (Greedy Equivalence Search): 
Score Function

• Assumptions: The score is

• score equivalent (i.e., assigning the same score to equivalent DAGs)

• locally consistent: score of a DAG increases (decreases) when adding 
any edge that eliminates a false (true) independence constraint

• decomposable: 

• E.g., BIC:

Chickering, Optimal Structure Identification With Greedy Search, Journal of Machine Learning Research, 2002

we can express it as:

Score(G,D) =
nX

i=1

Score(Xi,PaGi ) (1)

Note that the data D is implicit in the right-hand side Equa-
tion 1. Most commonly used scores in the literature have
these properties. For the remainder of this paper, we as-
sume they hold for the scoring function we use.

All of the CPDAG operators from GES are scored using
differences in the DAG scoring function, and in the limit of
large data, these scores are positive precisely for those op-
erators that remove incorrect independences and incorrect
dependences.

The first phase of the GES—called forward equivalence
search or FES—starts with an empty (i.e., no-edge)
CPDAG and greedily applies GES insert operators until no
operator has a positive score; these operators correspond
precisely to the union of all single-edge additions to all
DAG members of the current (equivalence-class) state. Af-
ter FES reaches a local maximum, GES switches to the sec-
ond phase—called backward equivalence search or BES—
and greedily applies GES delete operators until no operator
has a positive score; these operators correspond precisely to
the union of all single-edge deletions from all DAG mem-
bers of the current state.

Theorem 1. (Chickering, 2002) Let C be the CPDAG that
results from applying the GES algorithm to m records sam-
pled from a distribution that is perfect with respect to DAG
G. Then in the limit of large m, C ⇡ G.

The role of FES in the large-sample limit is only to identify
a state C for which G  C; Theorem 1 holds for GES under
any implementation of FES that results in an IMAP of G.
The implementation details can be important in practice be-
cause what constitutes a “large” amount of data depends on
the number of parameters in the model. In theory, however,
we could simply replace FES with a (constant-time) algo-
rithm that sets C to be the no-independence equivalence
class.

The focus of our analysis in the next section is on a mod-
ified version of BES, and the details of the delete operator
used in this phase are important. We detail the precondi-
tions, scoring function, and transformation algorithm for a
delete operator in Figure 2. We note that we do not need to
make any CPDAG transformations when scoring the oper-
ators; it is only once we have identified the highest-scoring
(non-negative) delete that we need to make the transforma-
tion shown in the figure. After applying the edge modifi-
cations described in the foreach loop, the resulting PDAG
P is not necessarily completed and hence we may have to
convert P into the corresponding CPDAG representation.
As shown by Chickering (2002), this conversion can be ac-
complished easily by using the structure of P to extract a

Operator: Delete(X,Y,H) applied to C

• Preconditions
X and Y are adjacent
H ✓ NAY,X

H = NAY,X \H is a clique

• Scoring
Score(Y, {PaCY [H} \X)�Score(Y,X [PaCY [H)

• Transformation
Remove edge between X and Y
foreach H 2 H do

Replace Y �H with Y ! H
if X �H then Replace with X ! H

end
Convert to CPDAG

Figure 2: Preconditions, scoring, and transformation algo-
rithm for a delete operator applied to a CPDAG.

DAG that we then convert into a CPDAG by undirecting all
reversible edges. The complexity of this procedure for a P

with n nodes and e edges is O(n · e), and requires no calls
to the scoring function.

4 SELECTIVE GREEDY EQUIVALENCE
SEARCH

In this section, we define a variant of the GES algorithm
called selective GES—or SGES for short—that uses a sub-
set of the GES operators. The subset is chosen based on a
given property ⇧ that is known to hold for the generative
structure G. Just like GES, SGES—shown in Figure 3—has
a forward phase and a backward phase.

For the forward phase of SGES, it suffices for our theoret-
ical analysis that we use a method that returns an IMAP of
G (in the large-sample limit) using only a polynomial num-
ber of insert-operator score calls. For this reason, we call
this phase poly-FES. A simple implementation of poly-FES
is to return the no-independence CPDAG (with no score
calls), but other implementations are likely more useful in
practice.

The backward phase of SGES—which we call selective
backward equivalence search (SBES)—uses only a subset
of the BES delete operators. This subset must necessarily
include all ⇧-consistent delete operators—defined below—
in order to maintain the large-sample consistency of GES,
but the subset can (and will) include additional operators
for the sake of efficient enumeration.

The DAG properties used by SGES must be equivalence
invariant, meaning that for any pair of equivalent DAGs,

Optimal Structure Identification With Greedy Search

We allow there to be missing values in each iid sample, but our results implicitly depend
on the assumption that the parameters of each Bayesian network are identifiable. We will
therefore assume for the remainder of this section that the empirical distribution defined
by the data D converges to p(·) as the number of records grows large.

The remainder of this section is organized as follows. In Section 4.1, we explore the
asymptotic behavior of the Bayesian scoring criterion, and in Section 4.2, we detail the
two-phase greedy algorithm and show how it takes advantage of that asymptotic behavior
to identify the optimal solution. Finally, in Section 4.3, we discuss the applicability of the
algorithm to non-Bayesian scoring criteria and to Bayesian scoring criteria for which the
definition of the structure hypothesis diÆers from the one we presented in Section 2.3. We
also discuss how violations of Assumption 1 can aÆect the solution quality of the algorithm.

4.1 Asymptotic Behavior of the Bayesian Scoring Criterion

Recall from Section 2 that the Bayesian scoring criterion for a DAG G measures the relative
posterior or relative log posterior of the hypothesis Gh that the independence constraints in
G are precisely the independence constraints in the generative distribution. Without loss of
generality, we express the Bayesian scoring criterion SB using the relative log posterior of
G

h:
SB(G,D) = log p(Gh) + log p(D|G

h) (3)

where p(Gh) is the prior probability of G
h, and p(D|G

h) is the marginal likelihood. The
marginal likelihood is obtained by integrating the likelihood function (i.e., Equation 1)
applied to each record in D over the unknown parameters of the model.

Definition 5 (Consistent Scoring Criterion)
Let D be a set of data consisting of m records that are iid samples from some distribution

p(·). A scoring criterion S is consistent if in the limit as m grows large, the following two

properties hold:

1. If H contains p and G does not contain p, then S(H,D) > S(G,D)

2. If H and G both contain p, and G contains fewer parameters than H, then S(G,D) >
S(H,D)

Geiger, Heckerman, King and Meek (2001) show that the models we consider in this
paper (i.e., those containing Gaussian or multinomial distributions) are curved exponential

models. The details of this class of model are not important for our results, but Haughton
(1988) shows that (under mild assumptions about the parameter prior) the Bayesian scoring
criterion is consistent for curved exponential models. In particular, Haughton (1988) shows
that Equation 3 for curved exponential models can be approximated using Laplace’s method
for integrals, yielding

SB(G,D) = log p(D|µ̂,Gh)°
d

2
log m + O(1) (4)

where µ̂ denotes the maximum-likelihood values for the network parameters, d denotes
the dimension (i.e., number of free parameters) of G, and m is the number records in D.
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GES: Search Procedure
• Performs forward (addition) / backward (deletion) equivalence search 

through the space of DAG equivalence classes

• Forward Greedy Search (FGS)

• Start from some (sparse) pattern (usually the empty graph)

• Evaluate all possible patterns with one more adjacency that entail 
strictly fewer CI statements than the current pattern

• Move to the one that increases the score most

• Iterate until a local maximum

• Backward Greedy Search (BGS)

• Start from the output of Stage (1)

• Evaluate all possible patterns with one fewer adjacency that entail 
strictly more CI statements than the current pattern

• Move to the one that increases the score most

• Iterate until a local maximum



GES X

Y

Z

Suppose data were generated by

X

Y

Z

(1)

X

Y

Z
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GES Z1

Y

Z3

Suppose data were generated by X Z2

Imagine the GES procedure...

Z4



Demonstrations with Tetrad

• 1. sample size effect (T = 1000 & 50) 

• 2. FCI (simple structure) 

• 3 & 4. FCI (more complex structure) 

• 5. LiNGAM

118 Causation, Prediction, and Search

C.) For each triple of vertices X , Y , Z such that the pair X , Y  and the pair Y , Z are each
adjacent in C but the pair X , Z are not adjacent in C, orient X  - Y  - Z as X  -> Y  <- Z if
and only if Y  is not in Sepset(X ,Z).
D. repeat

If A -> B, B and C are adjacent, A and C are not adjacent, and there is no
arrowhead at B, then orient B - C as B -> C.
If there is a directed path from A to B, and an edge between A and B, then orient
A - B as A -> B.

     until no more edges can be oriented.

Figure 1 traces the operation of the first two parts of the PC algorithm:

A B

C

D

E

True Graph

A B

C

D

E

Complete Undirected Graph

No zero order independenciesn = 0

A B

C

D

E

n = 2:     Second order independencies

n = 1      First order independencies

        A      C    B        |

A B

C

D

E

        A      E    B        |

        A       D   B        | 

          C       D    B        |

        B      E         
  
{C,D}|

Resulting Adjacencies

Resulting Adjacencies

Figure 1

X1 X2

X4             X3

L
X1 X2

X4             X3

L

X1 → X2 → X3



On the Faithfulness Assumption

health 
condition

• One might find independence between health condition & risk of 
mortality. Why?

mortality 
risk

healthy 
lifestyle

-

- -

• E.g., if a=-bc, then health_condition ⫫ mortality_risk, which 
cannot by seen from the graph!

• Faithfulness assumption eliminates this possibility!

• Weak or strong?

• Possible to be avoided?

a
b c X

Y Z

Possible to have 
Y ⫫ Z | X ?



Summary: The PC Algorithm

• “Process independence” implied by causal models 

• Causal Markov condition 

• Faithfulness Assumption 

• Relating conditional independence relations to properties 
of  causal DAG 

• The PC algorithm? 

• What if  there may exist confounders?


