22 First-Order Logic and Type Theory

evy, m = inl{) ifniseven
evy n = inr() ifnisodd

As a third modification, assume we intend to apply ev to even numbers n
to obtain n/2; if n is odd, we just want an indication that it was not even. The
annotation of the type is straightforward.

evs : Vz€nat. (Jy€nat. [y + y =, z]) V [Fy€nat. s(y + y) =, z]

Applying our annotation algorithm to the proof term leads to the following.

ev3 = \x.rec x
of f(0) = ink(0, [eq,])
| f(s(z')) = case f(z')
of inl(u) = let (¢, [p]) = v in inr[{c, eq,(p))]
| inr[w] = let[(d, q) = w] in inl(s(d), [r(z', d, q)])

But this version of ev does not satisfy our restriction: in the last line, the
hidden variable [d] occurs outside of brackets. Indeed, if we apply our technique
of erasing computationally irrelevant subterms we obtain

evs : nat —(nat+ 1)
ev3 = \x.rec
of f(0) = inl(0)
| F(s(2")) = case f(a)
of inl(u) = inr()
| inr(_) = inl(s(d))

where d is required, but not generated by the recursive call. Intuitively, the
information flow in the program is such that, in order to compute n/2 for even
n, we must compute (n —1)/2 for odd n.

The particular proof we had did not allow the particular bracket annotation
we proposed. However, we can give a different proof, which permits this anno-
tation. In this example, it is easier to just write the function with the desired
specification directly, using the function ev; which preserved the information
for the case of an odd number.

evs : nat —(nat + 1)
evgn = inl(n/2) if n is even

evgn = inr () if n is odd

evs = Azx. case evq(x)
of inl(c) = inl(c)
| inr(d) = inr ()

To complete this section, we return to our example of the predecessor spec-
ification and proof.

Draft of October 31, 2001

1.5 Structural Induction 23

pred’ : Vz€nat. -z =, 0D Jy€nat.s(y) =,
pred’ = Az€nat.rec x
of f(0) = (\u. abort (u eqy))
| f(s(2) = (Au. (z', refi(s(a'))))

If we hide all proof objects we obtain:

pred’ : Vz€nat.[-z =, 0] D Jy€nat. [s(y) =, 7]
pred’ = Az€nat.rec
of f(0) = (A[u]. abort (u eqg))
| f(s(2)) = (Alu]. (', [refi(s(z"))]))

Note that this function does not satisfy our restriction: the hidden variable u
occurs outside a bracket in the case for f(0). This is because we cannot bracket
any subterm of

abort (u eqy) : Jy€nat. [s(y) =, 0]

We conclude that our proof of pred’ does not lend itself to the particular
given annotation. However, we can give a different proof where we supply an
arbitrary witness ¢ for y in case z is 0 and prove that it satisfies s(y) =, 0 by
LE as before. We chose ¢ = 0.

pred’ : Vz€nat. -z =, 0D Jy€nat.s(y) =, z
pred’ = Az€nat.rec x
of f(0) = (A\u. (0,abort (u eqy)))
| f(s(z")) = (Au. (z', refi(s(z"))))

Now annotation and extraction succeeds, yielding pred. Of course, any nat-
ural number would do for the result of pred(0)

pred, : Vz€nat.[-z =, 0]DJycnat. [s(y) =, 7]
pred, = Az€nat.rec z
of f(0) = (\[u]. (0,[abort (u eqy,))
| f(s(z")) = (Alu]. (', [refi(s(2"))]
pred : nat— nat

pred = Ax€nat.rec x
of f(0)=10
| f(s(2')) = o'
The reader may test his understanding of the erasure process by transforming

pred;, from above step by step into pred. It requires some of the simplifications
on function types.

)
)

1.5 Structural Induction

We now leave arithmetic, that is, the theory of natural numbers, and discuss
more general data types. We first return to lists, whose elements are drawn

Draft of October 31, 2001

24 First-Order Logic and Type Theory

from arbitray types. The reader may wish to remind himself of the basic com-
putation constructs given in Section ??. We recall here only that there are two
introduction rules for lists:

list], I'rher I'Hterlist

'+ nil” € 7list Dhhatertise o0

In the induction principle, correspondingly, we have to account for two cases.
We first state it informally.

To prove A(l) true for an arbitrary list I, prove

1. A(nil) true and

2. Az ::1") true for an arbitrary x and l', under the assumption
A(l") true.

The first is the base case, the second the induction step. When we write this as
a formal inference rules, we obtain the analogue of primitive recursion.

F'tlerlist TF A(nil) true T,zer,l'erlist, A(l') truet A(z ::1') true
T+ A(l) true

listE

This principle is called structural induction over lists. Our first theorem about
lists will be a simple property of the append function. In order to formulate
this property, we need equality over lists. It is defined in analogy with the
propositional equality between natural numbers, based on the structure of lists.

I'Flerlist F'Fkerlist
I't1l=g k prop

L

T'Hl=p k true

=L In

['F nil =1, nil true Fl—;c::l:Lx::ktrueZLIc

The second introduction rules requires the heads of the two lists to be identical.
We can not require them to be equal, because they are of unknown type 7 and
we do not have a generic equality proposition that works for arbitrary types.
However, in this section, we are interested in proving generic properties of lists,
rather than, say, properties of integer lists. For this purpose, the introduction
rule above, and the three elimination rules below are sufficient.

Trhaxl=py:ktrue

=L Ecc
T'Fl=pk true
Lk nil =f y:: k true T'Fz::l = nil true
=1, Epe =L Licn
'k C true T'k C true

Draft of October 31, 2001

1.5 Structural Induction 25

Note that the first elimination rule is incomplete in the sense that we also know
that = must be identical to y, but we cannot obtain this information by the rule.
A solution to this problem is beyond the scope of these notes.
It is straightforward to show that equality is reflexive, symmetric and tran-
sitive, and we will use these properties freely below.
Next we give a definition of a function to append two lists which is a slightly
modified version from that in Section ?7.
app nil £ = &k
app (z:=U) k = x:: (appendl' k)

In the notation of primitive recursion:
app € 7list — 7list — 7 list

app = M.recl
of f(nil) = M\k. k
| flz=l)=> M.z (f(U) k)

We now prove
Vierlist. app [nil = [

Proof: By induction on the structure of I.
Case: [= nil. Then app nil nil =, nil since

app nil nil
= (rec nil
of f(nil) = k. k
| flz=l) = Ak z o f(I') k) nil
— (k.) nil
= nil

Case: | = z :I'. Then app I' nil = I' by induction hypothesis.
Therefore
z: (app ' mnil) = z 21
by rule =1, I.. We have to show
app (z = 1')nil = z = 1.
This follows entirely by computation. Starting from the term
in the conclusion:
app (x ::1') nil
= (rec z 1
of f(nil) = k. k
| flz::l") = k. z: f(U') k) nil
= (Mk.z:: (rec I
of f(nil) = \k. k
| flx=l)= Xz f(I') k) k) nil
= z:: (rec I
of f(nil) = k. k
| flz:=l) = Ak 2 f(I') k) nil

Draft of October 31, 2001

26 First-Order Logic and Type Theory

We arrive at the same term if we start from the induction hy-
pothesis.

z :: (app l' nil)
= z:: (rec '
of f(nil) = k. k
| f=l)= ez f(I') k)nil

Recall that computation is allowed in both directions (see Section 1.3),
thereby closing the gap between the induction hypothesis and the
conclusion. a

For the next theorem, we recall the specification of the reverse function
on lists from Section ??, using an auxiliary function rev with an accumulator
argument a.

rev € 71list — 7list — 7 list
revnila = a
rev (z::l') a rev !l (z::a)

Il

reverse € T1list — 7list
reverse [= revlnil

The property we will prove is the interaction between reverse and app.
Vier list. Vker list. reverse (app I k) =1 app (reverse k) (reverse [)

Based on general heuristics, an induction on [is indicated, since it allows us
to reduce in the left-hand side. However, such a proof attempt will fail. The
reason is that reverse is not itself recursive, but defined in terms of rev. In such
a situation, generalizing the induction hypothesis to express a corresponding
property of the recursive function is almost always indicated.

It is often quite difficult to find an appropriate generalization of the induction
hypothesis. It is useful to analyse the properties of rev in terms of reverse and
app. We generalize from an example

rev (1:2:3:mil) (4::5:nil) = 3:2:1:4::5::nil

to conjecture that rev | k =y, app (reverse 1) k (omitting the quanitifers on [
and k for the sake of brevity). We may or may not need this property, but it
will help us to develop conjectures about the interaction between rev and app.
Once again, the problem with this property is that the right-hand side mentions
reverse and is not expressed in terms of rev. If we substitute the right-hand
side will be

rev] k =1 app (rev | nil) k

Again this does not appear general enough, because of the occurrence of nil. If
we replace this my a new term m, we also need to modify the left-hand side.
The right generalization is suggested by our observation about the interaction
of reverse, app and rev. We obtain

Vier list. Vmer list. Vker list. rev | (app m k) =1, app (revim) k

Draft of October 31, 2001

1.5 Structural Induction 27

Now this can be proven by a straightforward structural induction over I. It most
natural to pick / as the induction variable here, since this allows reduction on
the right-hand side as well as the left-hand side. In general, it a good heuristic
to pick variables that permit reduction when instantiated.

Proof: By structural induction on [.
Case: [= nil. Then we get

left-hand side: rev nil (app m k) = app m k
right-hand side: app (rev nilm) k = app m k

so the equality follows by computation and reflexivity of equal-
ity.

Case: | = z::l'. It is often useful to write out the general form of the
induction hypothesis before starting the proof in the induction
step.

mer list. Vker list. rev ' (app m k) =, app (revl' m
A list. Vker li 4 k I k

As we will see, the quantifiers over m and k are critical here.
Now we follow the general strategy to reduce the left-hand side
and the right-hand side to see if we can close the gap by using
the induction hypothesis.

lhs: rev (z::1") (app m k)
= rev ' (z:: (app m k))
rhs: app (rev (z::1") m) k
= app (revl' (x::m)) k
=g rev ' (app (z ::m) k) by ind. hyp
= rev ' (z:: (app m k))

So by computation and the induction hypothesis the left-hand
side and the right-hand side are equal. Note that the universal
quantifier on m in the induction hypothesis needed to be instan-
tiated by x :: m. This is a frequent pattern when accumulator
variables are involved.

O

Returning to our original question, we generalize the term on the left-hand
side, reverse (app I k), to rev (app 1 k) m. The appropriate generalization of
the right-hand side yields

Vier list. Vker list. Vmer list. rev (app L k) m =g rev k (rev I m)
In this general form we can easily prove it by induction over [.

Proof: By induction over [.

Draft of October 31, 2001

28 First-Order Logic and Type Theory

Case: [= nil. Then

lhs: rev (app nil k) m = rev k m
rhs: rev k (rev nilm) = rev km

So the left- and right-hand side are equal by computation.

Case: | = z::1'. Again, we write out the induction hypothesis:
Vker list. Vmer list. Vrev (app I' k) m =, rev k (rev I' m)

Then
lhs rev (app (z::1') k) m
= rev (x:: (app l' k)) m
= rev (app l' k) (z = m)
rths rev k (rev (z ::1') m)
= rev k (rev l' (z::m))
So the left- and right-hand sides are equal by computation and

the induction hypothesis. Again, we needed to use z :: m for m
in the induction hypothesis.

O

By using these two properties together we can now show that this implies
the original theorem directly.

Vier list. Vker list. reverse (app I k) =1 app (reverse k) (reverse I)
Proof: Direct, by computation and previous lemmas.

lhs reverse (app l k)
= rev (app | k) nil
=y, rev k (rev [nil) by lemma
rhs app (reverse k) (reverse l)
= app (rev k nil) (rev [nil)
=g, rev k (app nil (rev [nil)) by lemma
=g, rev k (rev [nil)

So the left- and right-hand sides are equal by computation and the
two preceding lemmas. O

1.6 Reasoning about Data Representations

So far, our data types have been “freely generated” from a set of constructors.
Equality on such types is structural. This has been true for natural numbers,
lists, and booleans. In practice, there are many data representation which does
not have this property. In this section we will examine two examples of this
form.

Draft of October 31, 2001

