Chapter 1

First-Order Logic and Type
Theory

In the first chapter we developed the logic of pure propositions without reference
to data types such as natural numbers. In the second chapter we explained the
computational interpretation of proofs, and, separately, introduced several data
types and ways to compute with them using primitive recursion.

In this chapter we will put these together, which allows us to reason about
data and programs manipulating data. In other words, we will be able to prove
our programs correct with respect to their expected behavior on data. The
principal means for this is induction, introduced at the end of the last chapter.
There are several ways to employ the machinery we will develop. For example,
we can execute proofs directly, using their interpretation as programs. Or we
can eztract functions, ignoring some proof objects that have are irrelevant with
respect to the data our programs return. That is, we can contract proofs to
programs. Or we can simply write our programs and use the logical machinery
we have developed to prove them correct.

In practice, there are situations in which each of them is appropriate. How-
ever, we note that in practice we rarely formally prove our programs to be
correct. This is because there is no mechanical procedure to establish if a given
programs satisfies its specification. Moreover, we often have to deal with input
or output, with mutable state or concurrency, or with complex systems where
the specification itself could be as difficult to develop as the implementation.
Instead, we typically convince ourselves that central parts of our program and
the critical algorithms are correct. Even if proofs are never formalized, this
chapter will help you in reasoning about programs and their correctness.

There is another way in which the material of this chapter is directly relevant
to computing practice. In the absence of practical methods for verifying full
correctness, we can be less ambitious by limiting ourselves to program properties
that can indeed be mechanically verified. The most pervasive application of
this idea in programming is the idea of type systems. By checking the type

Draft of October 31, 2001

2 First-Order Logic and Type Theory

correctness of a program we fall far short of verifying it, but we establish a kind of
consistency statement. Since languages satisfy (or are supposed to satisfy) type
preservation, we know that, if a result is returned, it is a value of the right type.
Moreover, during the execution of a program (modelled here by reduction),
all intermediate states are well-typed which prevents certain absurd situations,
such as adding a natural number to a function. This is often summarized in the
slogan that “well-typed programs cannot go wrong”. Well-typed programs are
safe in this respect. In terms of machine language, assuming a correct compiler,
this guards against irrecoverable faults such as jumping to an address that does
not contain valid code, or attempting to write to inaccessible memory location.

There is some room for exploring the continuum between types, as present
in current programming languages, and full specifications, the domain of type
theory. By presenting these elements in a unified framework, we have the basis
for such an exploration.

We begin this chapter with a discussion of the universal and existential
quantifiers, followed by a number of examples of inductive reasoning with data

types.

1.1 Quantification

In this section, we introduce universal and existential quantification. As usual,
we follow the method of using introduction and elimination rules to explain
the meaning of the connectives. First, universal quantification, written as
Vxzer. A(z). For this to be well-formed, the body must be well-formed under
the assumption that z is a variable of type 7.

T type L, zer b A(x) prop
VF
Tk Vzer. A(z) prop

For the introduction rule we require that A(z) be valid for arbitrary z. In other
words, the premise contains a parametric judgment.

D ,zer b A(x) true
L+ Vzer. A(x) true

If we think of this as the defining property of universal quantification, then a
verification of Vxer. A(x) describes a construction by which an arbitrary ¢ € 7
can be transformed into a proof of A(t) true.

T+ Vzer. A(z) true FT-ter
'+ A(t) true

VE

We must verify that ¢t € 7 so that A(t) is a proposition. We can see that the
computational meaning of a proof of Vxer. A(zx) true is a function which, when

Draft of October 31, 2001

1.1 Quantification 3

given an argument ¢ of type 7, returns a proof of A(t). If we don’t mind over-
loading application, the proof term assignment for the universal introduction
and elimination rule is

T zer - M : A(z)
Pk xer. M :Vzer. A(x)

VI

Tk M :Vzer. Ax) T'Fter
THMt: A(t)

VE

The computation rule simply performs the required substitution.
(Azer. M)t = [t/z]M

The existential quantifier Jz€7. A(z) lies at the heart of constructive math-
ematics. This should be a proposition if A(x) is a proposition under the as-
sumption that z has type 7.

T type T,zer + A(z) prop
dF
Tk Jzer. A(z) prop

The introduction rule requires that we have a witness term ¢t and a proof that
t satisfies property A.

F'Hter T+ A(¢) true
Tk 3zer. A(z) true

The elimination rule bears some resemblance to disjunction: if we know that
we have a verification of Jze€r. A(z) we do not know the witness ¢. As a result
we cannot simply write a rule of the form

I+ Jzer. A(z) true
I'Fter

JE?

since we have no way of referring to the proper ¢. Instead we reason as follows:
If 3zer. A(z) is true, then there is some element of 7 for which A holds. Call
this element z and assume A(xz). Whatever we derive from this assumption
must be true, as long as it does not depend on z itself.

Tk 3zer. A(z) true T,zer, A(z) truet C true
L' C true

JE

The derivation of the second premise is parametric in z and hypothetical in
A(z), that is, z may not occur in T or C.

The proof term assignment and computational contents of these rules is not
particularly difficult. The proof term for an existential introduction is a pair

Draft of October 31, 2001

4 First-Order Logic and Type Theory

consisting of the witness ¢ and the proof that ¢ satisfies the stated property. The
elimination rule destructs the pair, making the components accessible.

Thkter TFM:A®
Tk (¢, M) :3zer. A(z)

'k M :3zer. A(z) I zer,u:A(z) - N : C
TkHlet (z,uy=MinN:C

JE

The reduction rule is straightforward, substituting both the witness and the
proof term certifying its correctness.

let(z,u) = (¢, M) in N = [M/u][t/z]N

As in the case of the propositional connectives, we now consider various
interactions between quantifiers and connectives to obtain an intuition regarding
their properties. We continue to denote a proposition A that depends on a
variable z by A(z).

Our first example states that universal quantification distributes over con-
junction. In order to make it fit on the page, we have abbreviated u:Vzer. A(z)A
B(z) by u:—. Furthermore, we named the parameter introduced into the deriva-
tion a (rather than z), to emphasize the distinction between a bound variable
in a proposition and a parameter which is bound in a derivation.

u a
a€T,u:— F Vzer. A(xz) A B(z) true aeT,u:—kFa€eT

VE
u:—,a€T F A(a) A B(a) true
A

u:—,a€7 F A(a) true

u:— bk Veer. A(x) true
F (Vzer. A(z) A B(z)) D(VzeT. A(x)) true >

u

The lists of hypotheses of the form z€7 and u:A in each line of a natural
deduction can be reconstructed, so we will use the following abbreviated form
familiar from the early development of propositional logic.

u
Vzer. A(z) A B(z) true Q€T

A(a) A B(a) true A
A(a) true

a

VE

Vzer. A(x) true
(Vzer. A(z) A B(z)) D(Vzer. A(z)) true

DI

From this deduction it is easy to see that

(Vzer. A(z) A B(x)) D(Vzer. A(x)) A (Vzer. B(x)) true

Draft of October 31, 2001

1.1 Quantification 5

By annotating the derivation above we can construct the following proof term
for this judgment (omitting some labels):

F o Au. (Azer. fst (uz), Aze€T. snd (u z))
(Vzer. A(z) A B(z)) D(Vzer. A(z)) A (VzerT. B(z))

The opposite direction also holds, which means that we can freely move the
universal quantifier over conjunctions and vice versa. This judgment (and also
the proof above) are parametric in 7. Any instance by a concrete type for 7
will be an evident judgment. We show here only the proof term (again omitting
some labels):

F o Ap. Azer. ((fst p) z, (snd p) x)
(Vzer. A(z)) A (Vzer. B(z)) D(Vzer. A(z) A B(z))

The corresponding property for the existential quantifier allows distributing
the existential quantifier over disjunction.

(Fzer. A(z) vV B(x)) = (JzeT. A(x)) V (Fzer. B(x))
We verify one direction.

u D
dzer. A(z) V B(x) true (Fzer. A(x)) V (Fzer. B(x)) true

(FzeT. A(x)) V (FzeT. B(x)) true
(3zer. A(z) vV B(x)) D(3zer. A(x)) V (Fzer. B(x)) true

Jgew
oI

where the deduction D is the following

(%1

a
a€rT A(a) true

Azer. A(z) true
A(a) V B(a) true Y (FzeT. A(x)) V (Fzer. B(x)) true
(Fzer. A(z)) V (FzeT. B(x)) true

\2§3

VEvl,’Uz

The omitted derivation of the second case in the disjunction elimination is sym-
metric to the given case and ends in VIg.

It is important to keep in mind the restriction on the existential elimination
rule, namely that the parameter must be new in the second premise. The
following is an incorrect derivation:

a? u w
a € nat Jrenat. A(s(x)) true A(s(a)) true
—— natl; JE*»w?
s(a) € nat A(s(a)) true
ar

Jyenat. A(y) true

DI
(3zenat. A(s(z))) D Jyenat. A(y) true

Draft of October 31, 2001

6 First-Order Logic and Type Theory

The problem can be seen in the two questionable rules. In the existential in-
troduction, the term a has not yet been introduced into the derivation and its
use can therefore not be justified. Related is the incorrect application of the IE
rule. It is supposed to introduce a new parameter a and a new assumption w.
However, a occurs in the conclusion, invalidating this inference.

In this case, the flaw can be repaired by moving the existential elimination
downward, in effect introducing the parameter into the derivation earlier (when
viewed from the perspective of normal proof construction).

—a
a € nat
————natl, ————w
s(a) € nat A(s(a)) true
u
Jzenat. A(s(z)) true Jyenat. A(y) true

Jgaw
Jyenat. A(y) true
oI

(3zenat. A(s(z))) D Jyenat. A(y) true

Of course there are other cases where the flawed rule cannot be repaired. For ex-
ample, it is easy to construct an incorrect derivation of (z€T. A(x)) D Vzer. A(x).

1.2 First-Order Logic

First-order logic, also called the predicate calculus, is concerned with the study
of propositions whose quantifiers range over a domain about which we make
no assumptions. In our case this means we allow only quantifiers of the form
Vzer. A(z) and JzeT. A(z) that are parametric in a type 7. We assume only
that 7 type, but no other property of 7. When we add particular types, such as
natural numbers nat or lists 7 list, we say that we reason within specific theories.
The theory of natural numbers, for example, is called arithmetic. When we
allow essentially arbitrary propositions and types explained via introduction
and elimination constructs (including function types, product types, etc.) we
say that we reason in type theory. It is important that type theory is open-ended:
we can always add new propositions and new types and even new judgment
forms, as long as we can explain their meaning satisfactorily. On the other
hand, first-order logic is essentially closed: when we add new constructs, we
work in other theories or logics that include first-order logic, but we go beyond
it in essential ways.

We have already seen some examples of reasoning in first-order logic in the
previous section. In this section we investigate the truth of various other propo-
sitions in order to become comfortable with first-order reasoning. Just like
propositional logic, first-order logic has both classical and constructive variants.
We pursue the constructive or intuitionistic point of view. We can recover classi-
cal truth either via an interpretation such as Godel’s translation®, or by adding

ldetailed in a separate note by Jeremy Avigad

Draft of October 31, 2001

