26 Proofs as Programs

Term Formation.

n € nat

natly

———— nat]
0 € nat s(n) € nat ’

'kt € nat TFtyer I,z €nat, f(z) eThHts €T
T'trectof f(0)=1to| f(s(z)) =>ts €T

natF

booll; booll,
T'F true € bool I' - false € bool

't e bool T'ksier I'ksper
'l ift then s; else sg € T

boolE

list]. I'tter T'kserlist _,
Thnil” €rlist - list
T T'kt:serlist

F'kterlist 'ks,€o D,z erlerlist, f(l) eclistks. €0
listE

I'krectof f(nil) = s, | f(z:])=>s. €0

Reductions.
(rec 0 of f(0) =t | f(s(z)) =t5) =
(recs(n) of f(0) =ty | f(s(z)) = t;) =
[(rec n of f(0) = to | f(s(z)) = t5)/ f(@)] [n/z]ts

to

if true then s; else sg
if false then s; else sq

81
S0

e
e
(recnil of f(nil) = s, | f(z 1) =>s.) = sp
(rec(h::t) of f(nil) = s, | f(x :1) = 5.) =
[(rect of f(nil) = s, | f(z 1) = o)/ F(1)] (b/2][¢/1] .

1.9 Predicates on Data Types

In the preceding sections we have introduced the concept of a type which is
determined by its elements. Examples were natural numbers, Booleans, and
lists. In the next chapter we will explicitly quantify over elements of types. For
example, we may assert that every natural number is either even or odd. Or we
may claim that any two numbers possess a greatest common divisor. In order
to formulate such statements we need some basic propositions concerned with
data types. In this section we will define such predicates, following our usual
methodology of using introduction and elimination rules to define the meaning
of propositions.

Draft of October 3, 2001



1.9 Predicates on Data Types 27

We begin with n < m, the less-than relation between natural numbers. We
have the following formation rule:

I'Fmé&nat T'Fn € nat
<F

T'm < n prop

Note that this formation rule for propositions relies on the judgment ¢ € 7.
Consequently, we have to permit a hypothetical judgment, in case n or m men-
tion variables declared with their type, such as x € nat. Thus, in general, the
question whether A prop may now depend on assumptions of the form x € 7.

This has a consequence for the judgment A true. As before, we now must
allow assumptions of the form B true, but in addition we must permit assump-
tions of the form x € 7. We still call the collection of such assumptions a context
and continue to denote it with T'.

<I, I'Fm < n true
['F0 <s(n) true Tk s(m) < s(n) true

The second rule exhibits a new phenomenon: the relation ‘<’ whose meaning
we are trying to define appears in the premise as well as in the conclusion. In
effect, we have not really introduced ‘<’, since it already occurs. However, such
a definition is still justified, since the conclusion defines the meaning of s(m) < -
in terms of m < -. We refer to this relation as inductively defined. Actually we
have already seen a similar phenomenon in the second “introduction” rule for
nat:

I'Fn € nat

—————natl;
'k s(n) € nat

The type nat we are trying to define already occurs in the premise! So it may
be better to think of this rule as a formation rule for the successor operation on
natural numbers, rather than an introduction rule for natural numbers.

Returning to the less-than relation, we have to derive the elimination rules.
What can we conclude from I' F m < n true? Since there are two introduction
rules, we could try our previous approach and distinguish cases for the proof of
that judgment. This, however, is somewhat awkward in this case—we postpone
discussion of this option until later. Instead of distinguishing cases for the proof
of the judgment, we distinguish cases for m and n. In each case, we analyse
how the resulting judgment could be proven and write out the corresponding
elimination rule. First, if n is zero, then the judgment can never have a normal
proof, since no introduction rule applies. Therefore we are justified in concluding
anything, as in the elimination rule for falsehood.

I'm <0 true
T'FC true

<FEy

If the m = 0 and n = s(n’), then it could be inferred only by the first introduc-
tion rule <Iy. This yields no information, since there are no premises to this
rule. This is just as in the case of the true proposition T.

Draft of October 3, 2001



28 Proofs as Programs

The last remaining possibility is that both m = s(m') and n = s(n'). In
that case we now that m' < n', because <I; is the only rule that could have

been applied.

T+ s(m') <s(n') true
<E

T'Fm' <n' true

We summarize the formation, introduction, and elimination rules.

I'Fn€enat T'Fm € nat
<F
I'tn < mprop

<I, I'Fm < n true <1,
I'F0 <s(n) true T F s(m) < s(n) true

I'Fm <0 true

'k C true
T'ks(m') <s(n') true
<E

<Ey

no rule for 0 < s(n')
T'Fm' <n' true

Now we can prove some simple relations between natural numbers. For

example:

<Iy

- 0 < s(0) true
- F 0 < s(s(0)) true

We can also establish some simple parametric properties of natural numbers.

U
m € nat,m < 0 truet m < 0 true
<FEy
m € nat,m < 0 truek L true
I’U

m € nat - —(m < 0) true

In the application of the <Ej rule, we chose C = L in order to complete the
proof of =(m < 0). Even slightly more complicated properties, such as m <
s(m) require a proof by induction and are therefore postponed until Section 1.10.

We introduce one further relation between natural numbers, namely equality.

Draft of October 3, 2001



1.10 Induction 29

We write m =, n. Otherwise we follow the blueprint of the less-than relation.

T'Fm € nat I‘I—nEnat_

~F
I'-m =, n prop
=1 I'Fm =, n true _
I'F0=, 0true T Fs(m) =, s(n) true
'k 0=, s(n) true
no =, Eyo elimination rule =nLo
N0 T'F C true A
Tt s(m) =, 0 true T+ s(m) =, s(n) true
= 0 =
' C true N 't-m =, n true N

Note the difference between the function
eq € nat — nat — bool

and the proposition
m=,n

The equality function provides a computation on natural numbers, always re-
turning true or false. The proposition m =, n requires proof. Using induction,
we can later verify a relationship between these two notions, namely that eqnm
reduces to true if m =, n is true, and egn m reduces to false if =(m =, n).

1.10 Induction

Now that we have introduced the basic propositions regarding order and equal-
ity, we can consider induction as a reasoning principle. So far, we have consid-
ered the following elimination rule for natural numbers:

'kt € nat 'Ftoer I,z €nat, f(z) eThHit; €T
Tkrectof f(0)=to]| f(s(z)) =>ts €T

natF

This rule can be applied if we can derive ¢t € nat from our assumptions and we
are trying to construct a term s € 7. But how do we use a variable or term
t € nat if the judgment we are trying to prove has the form M : A, that is, if
we are trying the prove the truth of a proposition? The answer is induction.
This is actually very similar to primitive recursion. The only complication is
that the proposition A we are trying to prove may depend on t. We indicate
this by writing A(z) to mean the proposition A with one or more occurrences of
a variable z. A(t) is our notation for the result of substituting ¢ for z in A. We

Draft of October 3, 2001



30 Proofs as Programs

could also write [t/z]A, but this is more difficult to read. Informally, induction

says that in order to prove A(t) true for arbitrary ¢t we have to prove A(0) true

(the base case), and that for every z € nat, if A(z) true then A(s(z)) true.
Formally this becomes:

'kt € nat 'k A(0) true T,z € nat, A(z) true - A(s(z)) true
T+ A(t) true

natFE’

Here, A(z) is called the induction predicate. If t is a variable (which is
frequently the case) it is called the induction variable. With this rule, we can
now prove some more interesting properties. As a simple example we show that
m < s(m) true for any natural number m. Here we use D to stand for the
derivation of the third premise in order to overcome the typesetting difficulties.

p— MmEnat,z€nat,z < s(z) true b z < s(z) true

m € nat,z € nat,z < s(x) true - s(z) < s(s(z))

<1y
m € nat - m € nat m € nat - 0 < s(0) D

natFE'’
m € nat - m < s(m)

The property A(z) appearing in the induction principle is A(z) =z < s(z). So
the final conclusion is A(m) = m < s(m). In the second premise we have to
prove A(0) = 0 < s(0) which follows directly by an introduction rule.

Despite the presence of the induction rule, there are other properties we
cannot yet prove easily since the logic does not have quantifiers. An example is
the decidability of equality: For any natural numbers m and n, either m =, n
or =(m =, n). This is an example of the practical limitations of quantifier-free
induction, that is, induction where the induction predicate does not contain any
quantifiers.

The topic of this chapter is the interpretation of constructive proofs as pro-
grams. So what is the computational meaning of induction? It actually corre-
sponds very closely to primitive recursion.

'kt € nat '+ M: A(0) I,z € nat,u(x):A(x) F N : A(s(z))
T'Findtofu(0) = M |u(s(z)) = N : A(t)

natF'’

Here, u(x) is just the notation for a variable which may occur in N. Note that u
cannot occur in M or in N in any other form. The reduction rules are precisely
the same as for primitive recursion.

(ind 0 of u(0) = M | u(s(z)) = N) = M
(ind s(n) of u(0) = M |u(s(z)) = N) =
[(ind n of u(0) = M | u(s(z)) = N)/u(n)] [n/z]N

Draft of October 3, 2001



1.10 Induction

We see that primitive recursion and induction are almost identical. The
only difference is that primitive recursion returns an element of a type, while
induction generates a proof of a proposition. Thus one could say that they are
related by an extension of the Curry-Howard correspondence. However, not
every type 7 can be naturally interpreted as a proposition (which proposition,
for example, is expressed by nat?), so we no longer speak of an isomorphism.

We close this section by the version of the rules for the basic relations be-
tween natural numbers that carry proof terms. This annotation of the rules is

straightforward.

I'tFné€mnat T'Fm € nat
<F

T'tn < mprop

<Ip

IF'F1ty: 0 < s(n)

''FM:m<n
T F1t (M) :s(m) <s(n)

<I

'FM:m<o0

<FEy

T FItEo(M): C

no rule for 0 < s(n’)

' m € nat

Tk M:s(m') <s(n')
<E
T'FLREs(M) :m' <n'

@

Tk t
n € na - F

N

I'-m =, n prop

=1Io

N

'eqy:0=,0

no =, Eoo elimination rule

'k M:s(m)=
't eqE, (M)

0
al :NESO
:C

''rM:m=,n

=.1s

Tk eq,(M) : s(m) =, s(n)

F'-M:0=, s(n)
al :NEOS

Tk eqEq(M):C

'k M :s(m) =, s(n)
F'FeqE,,(M):m=,n

=y Ess

Draft of October 3, 2001



