Chapter 1

Proofs as Programs

In this chapter we investigate a computational interpretation of constructive
proofs and relate it to functional programming. On the propositional fragment
of logic this is referred to as the Curry-Howard isomorphism [How80]. From the
very outset of the development of constructive logic and mathematics, a central
idea has been that proofs ought to represent constructions. The Curry-Howard
isomorphism is only a particularly poignant and beautiful realization of this
idea. In a highly influential subsequent paper, Martin-Lof [ML80] developed it
further into a more expressive calculus called type theory.

1.1 Propositions as Types

In order to illustrate the relationship between proofs and programs we introduce
a new judgment:
M:A M is a proof term for proposition A

We presuppose that A is a proposition when we write this judgment. We will
also interpret M : A as “M is a program of type A”. These dual interpretations
of the same judgment is the core of the Curry-Howard isomorphism. We either
think of M as a term that represents the proof of A true, or we think of A as the
type of the program M. As we discuss each connective, we give both readings
of the rules to emphasize the analogy.

We intend that if M : A then A true. Conversely, if A true then M : A.
But we want something more: every deduction of M : A should correspond to a
deduction of A true with an identical structure and vice versa. In other words
we annotate the inference rules of natural deduction with proof terms. The
property above should then be obvious.

Conjunction. Constructively, we think of a proof of A A B true as a pair of
proofs: one for A true and one for B true.

M:A N:B
(M,N): ANB

AT

Draft of October 3, 2001

2 Proofs as Programs

The elimination rules correspond to the projections from a pair to its first
and second elements.

M:AAB M:AANB
— AE —A

L Egr
fst M : A snd M : B

Hence conjunction A A B corresponds to the product type A x B.

Truth. Constructively, we think of a proof of T true as a unit element that

carries now information.
—TI

():T
Hence T corresponds to the unit type 1 with one element. There is no elimina-
tion rule and hence no further proof term constructs for truth.

Implication. Constructively, we think of a proof of A D B true as a function
which transforms a proof of A true into a proof of B true.

In mathematics and many programming languages, we define a function f
of a variable x by writing f(z) = ... where the right-hand side “...” depends on
x. For example, we might write f(z) = 2 +z — 1. In functional programming,
we can instead write f = Az. £2 + x — 1, that is, we explicitly form a functional
object by A-abstraction of a variable (z, in the example).

We now use the notation of A-abstraction to annotate the rule of implication
introduction with proof terms. In the official syntax, we label the abstraction
with a proposition (writing Au:A) in order to specify the domain of a function
unambiguously. In practice we will often omit the label to make expressions
shorter—usually (but not always!) it can be determined from the context.

U
u: A

M:B
D
M:A. M:ADB

u

The hypothesis label u acts as a variable, and any use of the hypothesis labeled
u in the proof of B corresponds to an occurrence of u in M.
As a concrete example, consider the (trivial) proof of A D A true:

u
A true

Iu

—_— D
AD A true

If we annotate the deduction with proof terms, we obtain

u
u:A

DI
(A:A.u): ADA

Draft of October 3, 2001

1.1 Propositions as Types 3

So our proof corresponds to the identity function id at type A which simply
returns its argument. It can be defined with id(u) = u or id = (Au:A. u).

The rule for implication elimination corresponds to function application.
Following the convention in functional programming, we write M N for the
application of the function M to argument N, rather than the more verbose
M(N).

M:ADB N:A
MN:B

DF

What is the meaning of A D B as a type? From the discussion above it should
be clear that it can be interpreted as a function type A — B. The introduction
and elimination rules for implication can also be viewed as formation rules for
functional abstraction Au:A. M and application M N.

Note that we obtain the usual introduction and elimination rules for impli-
cation if we erase the proof terms. This will continue to be true for all rules
in the remainder of this section and is immediate evidence for the soundness of
the proof term calculus, that is, if M : A then A true.

As a second example we consider a proof of (A A B) D(B A A) true.

u u
AN B true A A B true
AEg AE],
B true A true

Vi
B A A true

D
(AANB)D(BAA) true

I’u

When we annotate this derivation with proof terms, we obtain a function which
takes a pair (M, N) and returns the reverse pair (N, M).

—u - u
u:ANB u:ANB
—— AFpg — AE;
sndu: B fstu: A

Vi

(sndu,fstu) : BA A
(Au. (snd u, fstu)) : (AAB)D(BAA)

DI

Disjunction. Constructively, we think of a proof of AV B true as either a
proof of A true or B true. Disjunction therefore corresponds to a disjoint sum
type A+ B, and the two introduction rules correspond to the left and right
injection into a sum type.
M:A e N:B vin
inf®? M: AvVB int" N: AV B

In the official syntax, we have annotated the injections inl and inr with propo-
sitions B and A, again so that a (valid) proof term has an unambiguous type. In

Draft of October 3, 2001

4 Proofs as Programs

writing actual programs we usually omit this annotation. The elimination rule
corresponds to a case construct which discriminates between a left and right
injection into a sum types.

M:AVB N:C 0:C

v E®w
case M ofinlu = N |inrw = O :C

Recall that the hypothesis labeled u is available only in the proof of the second
premise and the hypothesis labeled w only in the proof of the third premise.
This means that the scope of the variable u is IV, while the scope of the variable
w is O.

Falsehood. There is no introduction rule for falsehood (). We can therefore
view it as the empty type 0. The corresponding elimination rule allows a term of
1 to stand for an expression of any type when wrapped with abort. However,
there is no computation rule for it, which means during computation of a valid
program we will never try to evaluate a term of the form abort M.

M:1

— 1F
abort® M : C

As before, the annotation C' which disambiguates the type of abort M will often
be omitted.

This completes our assignment of proof terms to the logical inference rules.
Now we can interpret the interaction laws we introduced early as programming
exercises. Consider the left-to-right direction of (L11)

(L11a) (AD(BAC)D(ADB)AN(ADC) true
Interpreted constructively, this assignment can be read as:

Write a function which, when given a function from A to pairs of
type B A C, returns two functions: one which maps A to B and one
which maps A to C.

This is satisfied by the following function:
Au. {(Qw. fst (uw)), (. snd (uv)))

Draft of October 3, 2001

1.2 Reduction 5

The following deduction provides the evidence:

u w u v
u:AD(BAC) w:A u: AD(BAC) v:A
DFE Y
uw:BAC uv:BAC
— ANEj —— AFEg
fst (uw) : B snd (uv) : C

w v

D)
Av.snd (uv): ADC
AN

Aw. fst (uw) : ADB >
{(Aw. fst (uw)), (M. snd (uv))) : (ADB)A(ADC) .
Au. ((Qw. fst (vw)), (. snd (uv))) : (AD(BAC))D(ADB)A(ADC(C)) K

Programs in constructive propositional logic are somewhat uninteresting in
that they do not manipulate basic data types such as natural numbers, integers,
lists, trees, etc. We introduce such data types in Section 1.5, following the same
method we have used in the development of logic.

To close this section we recall the guiding principles behind the assignment
of proof terms to deductions.

1. For every deduction of A true there is a proof term M and deduction of
M : A.

2. For every deduction of M : A there is a deduction of A true

3. The correspondence between proof terms M and deductions of A true is
a bijection.

We will prove these in Section 1.4.

1.2 Reduction

In the preceding section, we have introduced the assignment of proof terms to
natural deductions. If proofs are programs then we need to explain how proofs
are to be executed, and which results may be returned by a computation.

We explain the operational interpretation of proofs in two steps. In the
first step we introduce a judgment of reduction M =—> M', read “M reduces to
M". A computation then proceeds by a sequence of reductions M — M; —
M ..., according to a fixed strategy, until we reach a value which is the result
of the computation. In this section we cover reduction; we return to reduction
strategies in Section ?7?.

As in the development of propositional logic, we discuss each of the con-
nectives separately, taking care to make sure the explanations are independent.
This means we can consider various sublanguages and we can later extend our
logic or programming language without invalidating the results from this sec-
tion. Furthermore, it greatly simplifies the analysis of properties of the reduction
rules.

Draft of October 3, 2001

