10 Propositional Logic

1.4 Notational Definition

The judgments, propositions, and inference rules we have defined so far col-
lectively form a system of natural deduction. It is a minor variant of a system
introduced by Gentzen [Gen35]. One of his main motivations was to devise rules
that model mathematical reasoning as directly as possible, although clearly in
much more detail than in a typical mathematical argument.

We now consider how to define negation. So far, the meaning of any logical
connective has been defined by its introduction rules, from which we derived
its elimination rules. The definitions for all the connectives are orthogonal: the
rules for any of the connectives do not depend on any other connectives, only
on basic judgmental concepts. Hence the meaning of a compound proposition
depends only on the meaning of its constituent propositions. From the point
of view of understanding logical connectives this is a critical property: to un-
derstand disjunction, for example, we only need to understand its introduction
rules and not any other connectives.

A frequently proposed introduction rule for “not A” (written —A) is

u
A true

1 true
—Ju?
—A true

In words: —A is true if the assumption that A is true leads to a contradiction.
However, this is not a satisfactory introduction rule, since the premise relies the
meaning of L, violating orthogonality among the connectives. There are several
approaches to removing this dependency. One is to introduce a new judgment,
“A is false”, and reason explicitly about truth and falsehood. Another em-
ploys schematic judgments, which we consider when we introduce universal and
existential quantification.

Here we pursue a third alternative: for arbitrary propositions A, we think of
—A as a syntactic abbreviation for A D L. This is called a notational definition
and we write

—A=AD1.

This notational definition is schematic in the proposition A. Implicit here is the
formation rule

A prop

—A prop
We allow silent expansion of notational definitions. As an example, we prove
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1.4 Notational Definition 11

that A and - A cannot be true simultaneously.

u u
A A=A true AN A true
AEg AEL
—A true A true
DF
1 true
oI

—(A A —A) true

We can only understand this derivation if we keep in mind that —A stands for
AD 1, and that =(A A —A) stands for (AA-A)D L.

As a second example, we show the proof that A D ——A is true.

w u
- A true A true

DF
1 true
oIv

DI

——A true

AD——A true

Next we consider A V —A, the so-called “law” of excluded middle. Tt claims
that every proposition is either true or false. This, however, contradicts our
definition of disjunction: we may have evidence neither for the truth of A, nor
for the falsehood of A. Therefore we cannot expect A V —A to be true unless
we have more information about A.

One has to be careful how to interpret this statement, however. There are
many propositions A for which it is indeed the case that we know AV —A. For
example, T V (=T) is clearly true because T true. Similarly, 1 V (—1) is true
because —.L is true. To make this fully explicit:

Uu
TI 1 true
T true —F DI¥
— VI, -1 true
TV (=T) true —Vvip
1V (=l) true

In mathematics and computer science, many basic relations satisfy the law of
excluded middle. For example, we will be able to show that for any two numbers
k and n, either k < n or =(k < n). However, this requires proof, because for
more complex A propositions we may not know if A true or = A true. We will
return to this issue later in this course.

At present we do not have the tools to show formally that A V =A should
not be true for arbitrary A. A proof attempt with our generic proof strategy
(reason from the bottom up with introduction rules and from the top down with
elimination rules) fails quickly, no matter which introduction rule for disjunction
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12 Propositional Logic

we start with.

u
A true
A true L true
— VI — DI*
AV —A true —A true
—VIg
AV A true

We will see that this failure is in fact sufficient evidence to know that AV —A
is not true for arbitrary A.

1.5 Derived Rules of Inference

One popular device for shortening derivations is to introduce derived rules of
inference. For example,

AD B true BDC true
ADC true

is a derived rule of inference. Its derivation is the following:

u
A true A DB true
DF
B true BDOC true
DF
C true
ADC true

Note that this is simply a hypothetical derivation, using the premises of the
derived rule as assumptions. In other words, a derived rule of inference is
nothing but an evident hypothetical judgment; its justification is a hypothetical
derivation.

We can freely use derived rules in proofs, since any occurrence of such a rule
can be expanded by replacing it with its justification.

A second example of notational definition is logical equivalence “A if and
only if B” (written A= B). We define

(A=B)=(ADB)A(BDA).
That is, two propositions A and B are logically equivalent if A implies B and B

implies A. Under this definition, the following become derived rules of inference
(see Exercise 1.1). They can also be seen as introduction and elimination rules
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1.6 Logical Equivalences 13

for logical equivalence (whence their names).

u w
A true B true
B true A true
=J%v
A =B true
A =B true A true —5, A =B true B true —Ep
B true A true

1.6 Logical Equivalences

We now consider several classes of logical equivalences in order to develop some
intuitions regarding the truth of propositions. Each equivalence has the form
A= B, but we consider only the basic connectives and constants (A, D, V,
T, 1) in A and B. Later on we consider negation as a special case. We use
some standard conventions that allow us to omit some parentheses while writing
propositions. We use the following operator precedences

T >A>V>D>=
where A, V, and D are right associative. For example
—ADAV-—ADL

stands for
(=A4)D((AV (=(=4)))> 1)

In ordinary mathematical usage, A = B = C stands for (A= B)A(B =C(C); in the
formal language we do not allow iterated equivalences without explicit paren-
theses in order to avoid confusion with propositions such as (4 = A) = T.

Commutativity. Conjunction and disjunction are clearly commutative, while
implication is not.

(C1) ANB=BAA true
(C2) AVB =BV A true
(C3) AD B is not commutative

Idempotence. Conjunction and disjunction are idempotent, while self-implication
reduces to truth.

(I1) ANA= Atrue
(I12) AV A= A true
(I13) ADA=T true
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14 Propositional Logic

Interaction Laws. These involve two interacting connectives. In principle,
there are left and right interaction laws, but because conjunction and disjunction
are commutative, some coincide and are not repeated here.

L1
L2

(L1) AN(BAC)=(AAB)AC true

(L2) ANT = A true

(L3) AA(BDC) do not interact

(L4) AN(BVC)=(AANB)V (AACQ) true
(L5) AANL =1 true

(L) AV(BAC)=(AVB)A(AVC) true
(L7) AVT =T true

(L8) AV (BDC) do not interact

(L9) Av(Bv(C)=(AVB)VC true
(L10) AV L = A true

(L11) AD(BAC)=(ADB)A(ADC) true
(L12) ADT =T true

(L13) AD(BDC)=(AAB)DC true

(L14) AD(BV C) do not interact

(L15) AD L do not interact

(L16) (AANB)DC = AD(BDC) true

(L17) TOC =C true

(L18) (A D B)DC do not interact

(L19)

(L20)

L20

(AvB)DC=(ADC)AN(BDC) true
1DC =T true

1.7 Summary of Judgments

Judgments.
A prop A is a proposition
A true Proposition A is true

Propositional Constants and Connectives. The following table summa-
rizes the introduction and elimination rules for the propositional constants (T,
1) and connectives (A, D, V). We omit the straightforward formation rules.
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1.8 A Linear Notation for Proofs 15

Introduction Rules Elimination Rules
A true B true Al AN B true AEL AN B true AER
A A B true A true B true
T true TI no TE rule
u
A true
AD B true A true
OFE
B true B true
AD B true
u w
A true B true
A B
true VI, true Vig : :
AV B true AV B true AV B true C true C true
VEU,U}
C true
1 true
no LI rule 1lE
C true

Notational Definitions. We use the following notational definitions.
-A = ADL not A
A=B = (ADB)A(BDA) A if and only if B

1.8 A Linear Notation for Proofs

The two-dimensional format for rules of inference and deductions is almost uni-
versal in the literature on logic. Unfortunately, it is not well-suited for writ-
ing actual proofs of complex propositions, because deductions become very un-
wieldy. Instead with use a linearized format explained below. Furthermore,
since logical symbols are not available on a keyboard, we use the following con-
crete syntax for propositions:

A=B A <=>B A if and only if B

ADB A =>B A implies B

AV B A | B Aor B
AANB A& B A and B
-A A not A
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16 Propositional Logic

The operators are listed in order of increasing binding strength, and impli-
cation (=>), disjunction (1), and conjunction (&) associate to the right, just like
the corresponding notation from earlier in this chapter.

The linear format is mostly straightforward. A proof is written as a sequence
of judgments separated by semi-colon ‘;’. Later judgements must follow from
earlier ones by simple applications of rules of inference. Since it can easily be
verified that this is the case, explicit justifications of inferences are omitted.
Since the only judgment we are interested in at the moment is the truth of a
proposition, the judgment “A true” is abbreviated simply as “A”.

The only additional notation we need is for hypothetical proofs. A hypo-
thetical proof

A true

C true

is written as [A;...;C].

In other words, the hypothesis A is immediately preceded by a square bracket
(‘), followed by the lines representing the hypothetical proof of C, followed by
a closing square bracket (‘]’). So square brackets are used to delimit the scope
of an assumption. If we need more than hypothesis, we nest this construct as
we will see in the example below.

As an example, we consider the proof of (ADB) A (BDC)D(ADC) true.
We show each stage in the proof during its natural construction, showing both
the mathematical and concrete syntax, except that we omit the judgment “true”
to keep the size of the derivation manageable. We write ‘...’ to indicate that
the following line has not yet been justified.

(ADB)/\(BﬁC)D(ADC) .(1.&'=> B) & (B=>C) => (A => C);

The first bottom-up step is an implication introduction. In the linear form,
we use our notation for hypothetical judgments.

u

(ADB)A(BDC) [ (A=>B) & (B =>C);
) 1'&;> c1;

ADC (A=>B) & (B=>0C) => (A =>C);

(ADBYA(BDC)D(ADC0)

oI

Again, we proceed via an implication introduction. In the mathematical
notation, the hypotheses are shown next to each other. In the linear notation,
the second hypothesis A is nested inside the first, also making both of them
available to fill the remaining gap in the proof.
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1.8 A Linear Notation for Proofs 17

u —w
(ADB)A(BDC) A [ A=>B) & B=>0C);
: [ A;
c S c1;
A>C A= Cl;

DI (A=>B) & (B=>C) => (A =>0C);
(ADB)A(BDC)D(ADCO)

Now that the conclusion is atomic and cannot be decomposed further, we
reason downwards from the hypotheses. In the linear format, we write the
new line A => B; immediately below the hypothesis, but we could also have
inserted it directly below A;. In general, the requirement is that the lines
representing the premise of an inference rule must all come before the conclusion.
Furthermore, lines cannot be used outside the hypothetical proof in which they
appear, because their proof could depend on the hypothesis.

u
(ADB)A(BDC) . [ (h=>B) & (B =>C);
ADB A A => B;
[ A;
C c1;
DIv A=>C1];
ADC (A=>B) & (B=>C) => (A => C);

DI
(ADB)A(BDC)D(ADCO)

Nex we apply another straightforward top-down reasoning step. In this case,
there is no choice on where to insert Bj;.

(7
(ADB)A(BDC)
AEL —w [ (A=>B) & (B =>0C);
ADB A 5 A => B;
D .
B L A;
B;
C c1;
oI A=>C1;
ADC (A=>B) & (B=>C) => (A =>0C);

oI
(ADB)A(BDC)D(ADC)

For the last two steps, we align the derivations vertically. The are both
top-down steps (conjunction elimination followed by implication elimination).
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18 Propositional Logic

u

(ADB)A(BDC)

u AEL —w

(ADB)A(BDC(O) ADB
ANE

BOC B

2

¢
ADC
(ADB)A(BDC)D(ADC)

w

YA

[ (A=>B) & (B =>2C);
A => B;
B =
[ A;
B

c1;
A=>C1];
(A=>B) & (B=>C) => (A =>0C);
In the step above we notice that subproofs may be shared in the linearized
format, while in the tree format they appear more than once. In this case it is
only the hypothesis (A D B) A (B D C) which is shared.

U
(ADB)A(BDCO)
u NEL —w
(ADB)A(BDC) ADB A
AER OFE
BOC B
DF

C
ADC
(ADB)A(BDC)D(ADC)

DIv
YA

[ (A=>B) & (B=>0C);

A => B;

B => C;

[ A;
1;

A=>C1;
(A=>B) & (B=>C) => (A =>0C);
In the last step, the linear derivation only changed in that we noticed that

C already follows from two other lines and is therefore justified.

I Q w = |
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