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Now we can close the gap in the left-hand side by conjunction elimination.

u w
AD(BAC) true A true

DF u
BAC true AD(BAC) true
— ANEg
B true :
—DI¥
AD B true ADC true
AT

(ADB)A(ADC) true
(AD(BAC)D((ADB)A(ADCQ)) true

oI

The right premise of the conjunction introduction can be filled in analo-
gously. We skip the intermediate steps and only show the final derivation.

u w u v
AD(BAC) true A true AD(BAC) true A true
OF DF
B A C true B A C true
— ANE;, —  AER
B true C true
—DJ¥ — DI
A DB true ADC true
Vi

(ADB)A(ADC) true
(AD(BAC)D((ADB)A(ADCQ)) true

oI

1.3 Disjunction and Falsehood

So far we have explained the meaning of conjunction, truth, and implication.
The disjunction “A or B” (written as A V B) is more difficult, but does not
require any new judgment forms.

A prop B prop VP

AV B prop
Disjunction is characterized by two introduction rules: AV B is true, if either
A or B is true.
A true B true
— VI —— Vg
AV B true AV B true
Now it would be incorrect to have an elimination rule such as

AV B true v
A true

Ep?

because even if we know that AV B is true, we do not know whether the disjunct
A or the disjunct B is true. Concretely, with such a rule we could derive the
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truth of every proposition A as follows:

_—w
B D B true
VIg
AV (BDB) true
u VELT
B true A true
— DI* BYA
B D B true (BD B)D A true
DFE

A true

Thus we take a different approach. If we know that AV B is true, we must
consider two cases: A true and B true. If we can prove a conclusion C true in
both cases, then C must be true! Written as an inference rule:

U w
A true B true

AV B true C true C true
C true

VE®Y

Note that we use once again the mechanism of hypothetical judgments. In the
proof of the second premise we may use the assumption A true labeled u, in the
proof of the third premise we may use the assumption B true labeled w. Both
are discharged at the disjunction elimination rule.

Let us justify the conclusion of this rule more explicitly. By the first premise
we know AV B true. The premises of the two possible introduction rules are
A true and B true. In case A true we conclude C true by the substitution
principle and the second premise: we substitute the proof of A true for any use
of the assumption labeled u in the hypothetical derivation. The case for B true
is symmetric, using the hypothetical derivation in the third premise.

Because of the complex nature of the elimination rule, reasoning with dis-
junction is more difficult than with implication and conjunction. As a simple
example, we prove the commutativity of disjunction.

(AVB)D(BV A) true
We begin with an implication introduction.

—_—u
AV B true

BV A true
D
(AV B)D(BV A) true

u
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1.3 Disjunction and Falsehood 9

At this point we cannot use either of the two disjunction introduction rules.
The problem is that neither B nor A follow from our assumption AV B! So first
we need to distinguish the two cases via the rule of disjunction elimination.

v
A true B true

w

" : :
AV B true BV A true BV A true

VEvw
BV A true

D
(AVB)D(BV A) true

u

The assumption labeled w is still available for each of the two proof obligations,
but we have omitted it, since it is no longer needed.

Now each gap can be filled in directly by the two disjunction introduction
rules.

v w
A true B true
u vl ——— VI,
AV B true BV A true BV A true
VEv-Y
BV A true

u

D
(AVB)D(BVA) true

This concludes the discussion of disjunction. Falsehood (written as L, some-
times called absurdity) is a proposition that should have no proof! Therefore
there are no introduction rules, although we of course have the standard forma-
tion rule.

1F
1 prop

Since there cannot be a proof of L true, it is sound to conclude the truth of any
arbitrary proposition if we know L true. This justifies the elimination rule

1 true
C true

1FE

We can also think of falsehood as a disjunction between zero alternatives. By
analogy with the binary disjunction, we therefore have zero introduction rules,
and an elimination rule in which we have to consider zero cases. This is precisely
the LFE rule above.

From this is might seem that falsehood it useless: we can never prove it.
This is correct, except that we might reason from contradictory hypotheses!
We will see some examples when we discuss negation, since we may think of the
proposition “not A” (written —A) as A D L. In other words, —A is true precisely
if the assumption A true is contradictory because we could derive L true.
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1.4 Notational Definition

The judgments, propositions, and inference rules we have defined so far col-
lectively form a system of natural deduction. It is a minor variant of a system
introduced by Gentzen [Gen35]. One of his main motivations was to devise rules
that model mathematical reasoning as directly as possible, although clearly in
much more detail than in a typical mathematical argument.

We now consider how to define negation. So far, the meaning of any logical
connective has been defined by its introduction rules, from which we derived
its elimination rules. The definitions for all the connectives are orthogonal: the
rules for any of the connectives do not depend on any other connectives, only
on basic judgmental concepts. Hence the meaning of a compound proposition
depends only on the meaning of its constituent propositions. From the point
of view of understanding logical connectives this is a critical property: to un-
derstand disjunction, for example, we only need to understand its introduction
rules and not any other connectives.

A frequently proposed introduction rule for “not A” (written —A) is

u
A true

1 true
—Ju?
—A true

In words: —A is true if the assumption that A is true leads to a contradiction.
However, this is not a satisfactory introduction rule, since the premise relies the
meaning of L, violating orthogonality among the connectives. There are several
approaches to removing this dependency. One is to introduce a new judgment,
“A is false”, and reason explicitly about truth and falsehood. Another em-
ploys schematic judgments, which we consider when we introduce universal and
existential quantification.

Here we pursue a third alternative: for arbitrary propositions A, we think of
—A as a syntactic abbreviation for A D L. This is called a notational definition
and we write

—A=AD1.

This notational definition is schematic in the proposition A. Implicit here is the
formation rule

A prop

—A prop
We allow silent expansion of notational definitions. As an example, we prove
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1.4 Notational Definition 11

that A and - A cannot be true simultaneously.

u u
A A=A true AN A true
AEg AEL
—A true A true
DF
1 true
oI

—(A A —A) true

We can only understand this derivation if we keep in mind that —A stands for
AD 1, and that —(A A —A) stands for (A A —-A)D L.
As a second example, we show the proof that A D ——A is true.

w u
- A true A true

DF
1 true
oIv

Y Ay

——A true

AD——A true

Next we consider A V —A, the so-called “law” of excluded middle. Tt claims
that every proposition is either true or false. This, however, contradicts our
definition of disjunction: we may have evidence neither for the truth of A, nor
for the falsehood of A. Therefore we cannot expect A V —A to be true unless
we have more information about A.

One has to be careful how to interpret this statement, however. There are
many propositions A for which it is indeed the case that we know AV —A. For
example, T V (=T) is clearly true because T true. Similarly, 1 V (—=1) is true
because —.L is true. To make this fully explicit:

Uu
TI 1 true
T true —F DI¥
— VI, -1 true
TV (=T) true —Vvip
1V (=l) true

In mathematics and computer science, many basic relations satisfy the law of
excluded middle. For example, we will be able to show that for any two numbers
k and n, either k < n or =(k < n). However, this requires proof, because for
more complex A propositions we may not know if A true or = A true. We will
return to this issue later in this course.

At present we do not have the tools to show formally that A V = A should
not be true for arbitrary A. A proof attempt with our generic proof strategy
(reason from the bottom up with introduction rules and from the top down with
elimination rules) fails quickly, no matter which introduction rule for disjunction
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we start with.

u
A true
A true L true
— VI — DI¥
AV —A true —A true
—VIg
AV A true

We will see that this failure is in fact sufficient evidence to know that AV —A
is not true for arbitrary A.

1.5 Derived Rules of Inference

One popular device for shortening derivations is to introduce derived rules of
inference. For example,

AD B true BDC true
ADC true

is a derived rule of inference. Its derivation is the following:

u
A true A DB true
DF
B true BDOC true
DF
C true
ADC true

Note that this is simply a hypothetical derivation, using the premises of the
derived rule as assumptions. In other words, a derived rule of inference is
nothing but an evident hypothetical judgment; its justification is a hypothetical
derivation.

We can freely use derived rules in proofs, since any occurrence of such a rule
can be expanded by replacing it with its justification.

A second example of notational definition is logical equivalence “A if and
only if B” (written A= B). We define

(A=B)=(ADB)A(BDA).
That is, two propositions A and B are logically equivalent if A implies B and B

implies A. Under this definition, the following become derived rules of inference
(see Exercise 1.1). They can also be seen as introduction and elimination rules
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