22 Proofs as Programs

on the second argument y. So the result of the first application of minus must
be function, which is directly represented in the definition below.

minus = Az € nat.rec z
of m(0) = Ay € nat. 0
| m(s(z')) = Ay € nat. rec y
of p(0) = s(z')
| p(s(y")) = (m (")) y'

Note that m is correctly applied only to z’, while p is not used at all. So the
inner recursion could have been written as a case-expression instead.

Functions defined by primitive recursion terminate. This is because the be-
havior of the function on s(n) is defined in terms of the behavior on n. We can
therefore count down to 0, in which case no recursive call is allowed. An alterna-
tive approach is to take case as primitive and allow arbitrary recursion. In such
a language it is much easier to program, but not every function terminates. We
will see that for our purpose about integrating constructive reasoning and func-
tional programming it is simpler if all functions one can write down are total,
that is, are defined on all arguments. This is because total functions can be used
to provide witnesses for propositions of the form Vz € nat. Jy € nat. P(z,y)
by showing how to compute y from z. Functions that may not return an appro-
priate y cannot be used in this capacity and are generally much more difficult
to reason about.

1.6 Booleans

Another simple example of a data type is provided by the Boolean type with
two elements true and false. This should not be confused with the propositions
T and L. In fact, they correspond to the unit type 1 and the empty type 0.
We recall their definitions first, in analogy with the propositions.

1F
1 type
— 17 .
T-{)e1l no 1 elimination rule
OF
0 type
T'teoO
no 0 introduction rule (U

T'Fabort’ter

There are no reduction rules at these types.
The Boolean type, bool, is instead defined by two introduction rules.

—— boolF
bool type

booll; booll,
I' F true € bool T' I false € bool

Draft of October 3, 2001

1.7 Lists 23

The elimination rule follows the now familiar pattern: since there are two
introduction rules, we have to distinguish two cases for a given Boolean value.
This could be written as

caset of true = s | false = s

but we typically express the same program as an if ¢t then s; else sq.
I' -t € bool F'kFsier I'kFsper
T'kift then s; else sg € T

boolE

The reduction rules just distinguish the two cases for the subject of the if-
expression.

if true then s; else sy = s

if false then s; else sy — g

Now we can define typical functions on booleans, such as and, or, and not.

and = Mz € bool. Ay € bool.
if z then y else false

or = Az € bool. A\y € bool.
if 2 then true else y
not = Az € bool.

if z then false else true

1.7 Lists

Another more interesting data type is that of lists. Lists can be created with
elements from any type whatsoever, which means that 7 list is a type for any

type 7.

T type
list
T list type

Lists are built up from the empty list (nil) with the operation :: (pronounced
“cons”), written in infix notation.

list1, Prter Ik serlist
I'Fnil” € 7list TFt:serlist

list],

The elimination rule implements the schema of primitive recursion over lists. It
can be specified as follows:

f(@i) = s,
flx=l) = sc(xl, f(1)

where we have indicated that s, may mention z, I, and f(l), but no other
occurrences of f. Again this guarantees termination.

F'kterlist I'ks, €0 Nrzerlerlist,f(l)eoks. €0
listFE

I'krectof f(nil) = s, | f(z:]) > s. €0

Draft of October 3, 2001

24 Proofs as Programs

We have overloaded the rec constructor here—from the type of ¢ we can always
tell if it should recurse over natural numbers or lists. The reduction rules are
once again recursive, as in the case for natural numbers.

(recnil of f(nil) = s, | f(z =) = s.) = s,
(rec (h::t) of f(nil) = s, | f(z :]) = 5.) =
[(rect of f(nil) = s, | f(z 1) = s0)/ £ ()] [1/2] [¢/1] ¢

Now we can define typical operations on lists via primitive recursion. A
simple example is the append function to concatenate two lists.

appendnilk = k
append (z 1"k = x:: (appendl'k)

In the notation of primitive recursion:

append = M € 7list. Ak € 7list. rec [
of a(nil) = &
| a(z:=l") =z (al)
F append € 7list — 7list — 7list

Note that the last judgment is parametric in 7, a situation referred to as
parametric polymorphism. In means that the judgment is valid for every type
7. We have encountered a similar situation, for example, when we asserted that
(A A B)D A true. This judgment is parametric in A and B, and every instance
of it by propositions A and B is evident, according to our derivation.

As a second example, we consider a program to reverse a list. The idea is
to take elements out of the input list / and attach them to the front of a second
list a one which starts out empty. The first list has been traversed, the second
has accumulated the original list in reverse. If we call this function rev and the
original one reverse, it satisfies the following specification.

rev € 71list— 7list — 7list
revnila = a
rev (z ') a revi (z::a)

reverse € Tlist — 7list
reversel = rev [nil

In programs of this kind we refer to a as the accumulator argument since it
accumulates the final result which is returned in the base case. We can see that
except for the additional argument a, the rev function is primitive recursive.
To make this more explicit we can rewrite the definition of rev to the following
equivalent form:
revnil = MAa.a
rev (z::1) = Aa.revl(z:a)
Now the transcription into our notation is direct.

rev = M € 7list. rec [
of r(nil) = la € Tlist. a
| r(z:l') = Aa € Tlist. r (I') (2 :: a)
reversel = revlnil

Draft of October 3, 2001

1.8 Summary of Data Types 25

Finally a few simple functions which mix data types. The first counts the
number of elements in a list.

length € 7list - nat

0
s(length ("))

length nil
length (z ::1")

length = Mz € Tlist. rec ¢
of le(nil) = 0
| le(z 2 1") = s(le (I'))

The second compares two numbers for equality.

e¢ € mnat—nat—bool

eg00 = true
eq 0 (s(y')) = false
eg (s(z')) 0 = false
eq (s(2)) (s(v')) = eqa'y

As in the example of subtraction, we need to distinguish two levels.

e = Az € nat.rec x
of e(0) = Ay € nat. rec y
of f(0) = true
| f(s(y')) = false
| e(s(z')) = Ay € nat. rec y
of f(0) = false
| f(s(¥) = e(«) ¥

We will see more examples of primitive recursive programming as we proceed
to first order logic and quantification.

1.8 Summary of Data Types

Judgments.
T type T is a type
ter t is a term of type 7

Type Formation.

———— natF —— boolF T type listF’
nat type bool type 7 list type

Draft of October 3, 2001

26 Proofs as Programs

Term Formation.

n € nat

natly

———— nat]/
0 € nat s(n) € nat ’

't € nat THtoer I,z €nat, f(z) eThHits €T
T'trectof f(0)=1to| f(s(z)) =>ts €T

natF

booll; booll,
T'F true € bool I' I false € bool

'+t € bool I'ksier I'ksper
'l ift then s; else sg € T

boolE

list]. I'tter T'kserlist _,
Thnil” €rlist - list
T ThHt:serlist

I'-terlist Fks,€c0 D,z erlerlist, f(l) eclistks. €0
listE

I'krectof f(nil) = s, | f(z:l)=>s. €0

Reductions.
(rec 0 of f(0) = tg | f(s(z)) =t;) =
(recs(n) of f(0) =ty | f(s(z)) = t;) =
[(rec n of f(0) = to | f(s(z)) = t5)/ f(@)] [n/z]ts

to

if true then s; else s
if false then s; else sg

S1
S0

—
—
(recnil of f(nil) = s, | f(z 1) =>s.) = sp
(rec(h::t) of f(nil) = s, | f(x :1) = 5.) =
[(rect of f(nil) = sn | f(z::1) = sc)/f(D)] [h/=][t/]] sc

1.9 Predicates on Data Types

In the preceding sections we have introduced the concept of a type which is
determined by its elements. Examples were natural numbers, Booleans, and
lists. In the next chapter we will explicitly quantify over elements of types. For
example, we may assert that every natural number is either even or odd. Or we
may claim that any two numbers possess a greatest common divisor. In order
to formulate such statements we need some basic propositions concerned with
data types. In this section we will define such predicates, following our usual
methodology of using introduction and elimination rules to define the meaning
of propositions.

Draft of October 3, 2001

