1.2 Reduction 5

The following deduction provides the evidence:

u w u v
u:AD(BAC) w:A u:AD(BAC) v:A
DFE DF
uw:BAC uv:BAC
— AEL ——— AEg
fst (uw) : B snd (uv) : C

w v

)\w.fst(uw):ADBD /\v.snd(uv):ADC’D
{((Aw. fst (uw)), (M. snd (uv))) : (ADB)A(ADC) M .
Au. {(Aw. fst (uw)), (\v. snd (uv))) : (AD(BAC))D(ADB)A(ADC)) E

Programs in constructive propositional logic are somewhat uninteresting in
that they do not manipulate basic data types such as natural numbers, integers,
lists, trees, etc. We introduce such data types in Section 1.5, following the same
method we have used in the development of logic.

To close this section we recall the guiding principles behind the assignment
of proof terms to deductions.

1. For every deduction of A true there is a proof term M and deduction of
M: A.

2. For every deduction of M : A there is a deduction of A true

3. The correspondence between proof terms M and deductions of A true is
a bijection.

We will prove these in Section 1.4.

1.2 Reduction

In the preceding section, we have introduced the assignment of proof terms to
natural deductions. If proofs are programs then we need to explain how proofs
are to be executed, and which results may be returned by a computation.

We explain the operational interpretation of proofs in two steps. In the
first step we introduce a judgment of reduction M =—> M', read “M reduces to
M"™. A computation then proceeds by a sequence of reductions M — M; —
M ..., according to a fixed strategy, until we reach a value which is the result
of the computation. In this section we cover reduction; we return to reduction
strategies in Section ?7?.

As in the development of propositional logic, we discuss each of the con-
nectives separately, taking care to make sure the explanations are independent.
This means we can consider various sublanguages and we can later extend our
logic or programming language without invalidating the results from this sec-
tion. Furthermore, it greatly simplifies the analysis of properties of the reduction
rules.

Draft of October 3, 2001

6 Proofs as Programs

In general, we think of the proof terms corresponding to the introduction
rules as the constructors and the proof terms corresponding to the elimination
rules as the destructors.

Conjunction. The constructor forms a pair, while the destructors are the
left and right projections. The reduction rules prescribe the actions of the
projections.

fst (M, N)

M
snd (M, N) N

—
=

Truth. The constructor just forms the unit element, (). Since there is no
destructor, there is no reduction rule.

Implication. The constructor forms a function by A-abstraction, while the
destructor applies the function to an argument. In general, the application of
a function to an argument is computed by substitution. As a simple example
from mathematics, consider the following equivalent definitions

fl@)=2?+z-1 f=Xz.22+z-1
and the computation
fB)=0z.22+2-1)3)=[3/z](z +2-1)=32+3-1=11
In the second step, we substitute 3 for occurrences of x in 22 + z — 1, the body
of the A-expression. We write [3/z](z? +2—1)=32+3 1.

In general, the notation for the substitution of NV for occurrences of u in M
is [N/u]M. We therefore write the reduction rule as

(M:A. M) N = [N/ulM

We have to be somewhat careful so that substitution behaves correctly. In
particular, no variable in IV should be bound in M in order to avoid conflict.
We can always achieve this by renaming bound variables—an operation which
clearly does not change the meaning of a proof term.

Disjunction. The constructors inject into a sum types; the destructor distin-
guishes cases. We need to use substitution again.

caseinl® M ofinlu = N |intrw = 0 = [M/u]N
caseinr® M ofinlu = N |inrw = 0 = [M/w]O

Falsehood. Since there is no constructor for the empty type there is no re-
duction rule for falsehood.

Draft of October 3, 2001

1.2 Reduction 7

This concludes the definition of the reduction judgment. In the next section
we will prove some of its properties.
As an example we consider a simple program for the composition of two
functions. It takes a pair of two functions, one from A to B and one from B to
C and returns their composition which maps A directly to C.

comp : ((ADB)A(BDC))D(ADC(C)
We transform the following implicit definition into our notation step-by-step:

comp(f,g) (w) = g(f(w))

comp(f,g) = Aw.g(f(w))
compu = Aw. (sndu) ((fstu)(w))
comp = Au. Aw. (sndwu) ((fst u) w)

The final definition represents a correct proof term, as witnessed by the following
deduction.

w: (AS B A(BoC)

u NET, w
u: (ADB)A(BDCO) fstu: ADB w:A
NER DOE
sndu: BDC (fstu)w : B
DFE
(sndu) ((fstu)w) : C
D w
Aw. (sndu) ((fstu)w) : ADC
DI

(Au. Mw. (sndu) ((fstu)w)): (ADB)A(BDC))D(ADC)

We now verify that the composition of two identity functions reduces again to
the identity function. First, we verify the typing of this application.

(Au. dw. (sndu) ((fstu) w)) {((Az. z),(Ay.y)) : ADA

Now we show a possible sequence of reduction steps. This is by no means
uniquely determined.

(Au. Aw. (sndu) ((fst u) w)) ((Az. z), Ny. y))
= w. (snd((Az. z), (Ay.))) ((fst ((Az. w) (Mg y))) w)
= Aw. (My. y) (st ((Az. z), (Ay. 9))) w)
= Aw. (. y) ((A\z. 2)w)
= w. . y)w
= w.w

We see that we may need to apply reduction steps to subterms in order to reduce
a proof term to a form in which it can no longer be reduced. We postpone a
more detailed discussion of this until we discuss the operational semantics in
full.

Draft of October 3, 2001

Proofs as Programs

1.3 Summary of Proof Terms

Judgments.

M:A M is a proof term for proposition A
M= M' M reduces to M’

Proof Term Assignment.

Constructors

M:A N:B
(M,N): AAB

vl

M:B
D
Mu:A. M:ADB

u

M:A VI
- L
inf® M:AvB
N:B

— Viy
int"N:AVB

no constructor for L

Destructors

M:A/\B/\
fst M : A

Er

M:A/\B/\
snd M : B

Eg

no destructor for T

M:ADB N:A
DF
MN:B
U —w
u:A w:B

M:AVB N:C O:C
VE®W

case M ofinlu = N |inrw = O :C

M:1

— 1K
abort® M : C

Draft of October 3, 2001

1.3 Summary of Proof Terms 9

Reductions.
fst (M, N)
snd (M, N)
no reduction for ()
(Au:A. M) N [N/u]M

=
caseinl® M ofinlu = N |inrw = 0 = [M/u]N
caseinr® M ofinlu = N |inrw = 0 = [M/w]O

M
N

Ll

no reduction for abort

Concrete Syntax. The concrete syntax for proof terms used in the mechan-
ical proof checker has some minor differences to the form we presented above.

U u Variable
(M, N) M, N) Pair
fst M fst M First projection
snd M snd M Second projection
() O Unit element
Au:A. M fn u => M Abstraction
MN M N Application
in1® M inl M Left injection
inr? N inr N Right injection
case M case M Case analysis

ofinlu = N of inl u => N

| inrw = O | inr w => 0
end

abort® M abort M Abort

Pairs and unit element are delimited by parentheses ‘(" and ‘)’ instead of
angle brackets (and). The case constructs requires an end token to mark the
end of the a sequence of cases.

Type annotations are generally omitted, but a whole term can explicitly be
given a type. The proof checker (which here is also a type checker) infers the
missing information. Occasionally, an explicit type ascription M : A is necessary
as a hint to the type checker.

For rules of operator precedence, the reader is refered to the on-line doc-
umentation of the proof checking software available with the course material.
Generally, parentheses can be used to disambiguate or override the standard
rules.

As an example, we show the proof term implementing function composition.

Draft of October 3, 2001

10 Proofs as Programs

term comp : (A =>B) & (B=>C) => (A =>C) =
fn u => fn x => (snd u) ((fst u) x);

We also allow annotated deductions, where each line is annotated with a
proof term. This is a direct transcription of deduction for judgments of the
form M : A. As an example, we show the proof that AV BD BV A, first in the
pure form.

proof orcomm : A | B=>B | A =
begin
[A B;

[A;

B | Al;

Now we systematically annotate each line and obtain

annotated proof orcomm : A | B=>B | A =
begin
[Lu: A
[v : A;
inr v : B | Al;
[w: B;
inl w : B | A];
case u

B;

of inl v => inr v
| inr w => inl w
end : B | A];
fn u => case u
of inl v => inr v
| inr w => inl w
end : A| B=>B | A
end;

1.4 Properties of Proof Terms

In this section we analyze and verify various properties of proof terms. Rather
than concentrate on reasoning within the logical calculi we introduced, we now
want to reason about them. The techniques are very similar—they echo the
ones we have introduced so far in natural deduction. This should not be sur-
prising. After all, natural deduction was introduced to model mathematical
reasoning, and we now engage in some mathematical reasoning about proof
terms, propositions, and deductions. We refer to this as meta-logical reasoning.

Draft of October 3, 2001

