Sample Solution for HW 2

Constructive Logic

Oct. 05, 2001

Problem 1 Use truth tables to decide whether the following arguments are classically valid:

(a) Bush will resign or America will go to war if there is a catastrophe.

America is going to war with Bush as president.

There was a catastrophe.

Proof. We can denote the following propositions as follows:

"Bush will resign" — B (we will interpret "Bush is a president" and "Bush will NOT resign" $(\neg B)$

"America will go to war" — A

"There is a catastrophe" — C

Then the argument can be expressed as:

$$\begin{array}{c} C \to (B \vee A) \\ \hline A \wedge \neg B \\ \hline C \end{array}$$

The the bold row of the following truth table shows that the argument is invalid.

A	B	C	$C \to (B \lor A)$	$A \wedge \neg B$	C
T	T	T	T	F	T
T	T	F	T	F	F
T	F	T	T	T	T
${f T}$	\mathbf{F}	\mathbf{F}	${f T}$	${f T}$	\mathbf{F}
F	T	T	T	F	T
F	T	F	T	F	F
F	F	T	F	F	T
F	F	F	T	F	F

(b) Bush will resign or America will go to war if there is a catastrophe. If there is a catastrophe while Bush is president, then America

Proof. We can denote the following propositions as follows:

"Bush will resign" — B (we will interpret "Bush is a president" and "Bush will NOT resign" $(\neg B)$

"America will go to war" — A

"There is a catastrophe" — C

Then the argument can be expressed as:

$$\frac{C \to (B \lor A)}{(C \land \neg B) \to A}$$

The bold rows of the following truth table shows that the argument is valid.

A	B	C	$C \to (B \lor A)$	$(C \land \neg B) \to A$
\mathbf{T}	${f T}$	${f T}$	${f T}$	${f T}$
\mathbf{T}	${f T}$	\mathbf{F}	${f T}$	${f T}$
\mathbf{T}	\mathbf{F}	${f T}$	${f T}$	${f T}$
\mathbf{T}	\mathbf{F}	\mathbf{F}	${f T}$	${f T}$
\mathbf{F}	${f T}$	${f T}$	${f T}$	${f T}$
\mathbf{F}	${f T}$	\mathbf{F}	${f T}$	${f T}$
F	F	T	F	F
\mathbf{F}	\mathbf{F}	\mathbf{F}	${f T}$	${f T}$

Problem 2 Use Kripke models to prove the following:

$$(a) \Vdash \neg \neg (A \lor \neg A)$$

$$(b) \neg \neg A \Rightarrow B \Vdash A \Rightarrow \neg \neg B$$

Proof. (a) We want to show that for every Kripke model $K, K \Vdash \neg \neg (A \lor \neg A)$. This is an abbreviated way of saying that $\forall i \in K \ i \Vdash \neg \neg (A \lor \neg A)$.

Fix K and let i be any world of K. We want to show that $i \Vdash \neg \neg (A \lor \neg A)$. By the definition of forcing, this is equivalent to saying that $\forall j \geq i, \ j \not \Vdash \neg (A \lor \neg A)$, which is equivalent to saying that $\exists k \geq j \geq j, \ k \Vdash A \lor \neg A$. In other words, to show that $i \Vdash \neg \neg (A \lor \neg A)$ it suffices to show that for $\forall j \geq j$ we can find a $k \geq j$ such that $k \Vdash A \lor \neg A$. Now let us prove that.

Fix arbitrary $j \geq i$. Now, either there exit a world $l \geq j$ such that $l \Vdash A$ or there is none. (Note that here we use a classical argument — low of excluded middle — to reason about what is true at a world of the model.)

Case 1: There is such $l \Vdash A$. Than, let k = l, and we have that $k \Vdash A$, which implies that $k \Vdash A \lor \neg A$ by the definition of forcing.

Case 2: There is no such l. Then $j \Vdash \neg A$, so of $k = j, k \Vdash \neg A$, which

again implies that $k \Vdash A \vee \neg A$ by the definition of forcing.

Therefore, we can always find $k \geq j$ such that $k \Vdash A \vee \neg A$. This completes the proof. \blacksquare

Proof. (b) We want to show that of K is a model such that $K \Vdash \neg \neg A \Rightarrow B$, then also $K \Vdash A \Rightarrow \neg \neg B$.

Fix $K \Vdash \neg \neg A \Rightarrow B$. We want to show that $K \Vdash A \Rightarrow \neg \neg B$, i.e. $\forall i \in K, i \Vdash A \Rightarrow \neg \neg B$. The statement $i \Vdash A \Rightarrow \neg \neg B$ is equivalent to statement $\forall j \geq i, j \Vdash A$ implies $j \Vdash \neg \neg B$. As above, the statement $j \Vdash \neg \neg B$ is equivalent to the statement $\forall k \geq j \exists l \geq k, l \Vdash B$. Therefore, it suffices to show for $j \in K$, if $j \Vdash A$ then $\forall k \geq j \exists l \geq k, l \Vdash B$.

Fix $j \Vdash A$ (if no such j exist we are trivially done). We claim that $j \Vdash \neg \neg A$. Indeed, by monotonicity $\forall n \geq j, n \Vdash A$, but than $\forall n \geq j \exists m \geq n$ (e.g., n itself) such that $m \Vdash A$. As we sow in the previous proof this is equivalent to $j \Vdash \neg \neg A$. Now we use that fact that $K \Vdash \neg \neg A \Rightarrow B$, and conclude that $j \Vdash B$, by the definition of forcing. By monotonicity, we conclude that $\forall k \geq j \exists l \geq k, l \Vdash B$ as desired. This concludes that proof.

Problem 3 Show that the following sequent is not derivable in constructive logic:

$$A \Rightarrow B \vdash \neg A \lor B$$

Proof. The Soundness Theorem for Kripke semantics states that $A \Rightarrow B \vdash \neg A \lor B$ implies $A \Rightarrow B \Vdash \neg A \lor B$. The counter-positive of this statement is $A \Rightarrow B \nvDash \neg A \lor B$ implies $A \Rightarrow B \nvDash \neg A \lor B$. Thus, to show that the sequent $A \Rightarrow B \vdash \neg A \lor B$ is not derivable it suffices to show that there exit a Kripke model K such that $K \nvDash \neg A \lor B$ but $K \Vdash A \Rightarrow B$. The following model has that property:

$$\begin{array}{ccc}
\circ^2 & A, B \\
| & & \\
\circ_1 & \emptyset
\end{array}$$

Clearly, $1 \nVdash \neg A$ and $1 \nVdash B$ so $1 \nVdash \neg A \lor B$. However $1, 2 \Vdash A \Rightarrow B$.