HOMEWORK 9 Due Thursday, November 15

- 1. In van Dalen, do problem 3 on p. 85.
- 2. Let L be any language. Which of the following statements are true and which are false? Justify your answers.
 - (a) If φ is any sentence, either $\models \varphi$ or $\models \neg \varphi$.
 - (b) If φ is any sentence and \mathcal{A} is any *L*-structure, either $\mathcal{A} \models \varphi$ or $\mathcal{A} \models \neg \varphi$.
 - (c) If φ and ψ are any sentences, $\models \varphi \land \psi$ implies $\models \varphi$ and $\models \psi$.
 - (d) If φ and ψ are any sentences, $\models \varphi \lor \psi$ implies $\models \varphi$ or $\models \psi$.
- 3. Find a prenex sentence (i.e. one where all the quantifiers occur up front) logically equivalent to

$$(\exists x A(x) \land y = t) \to \forall y (B(y) \lor \exists x R(y, x)).$$

4. Suppose the formula ψ has no free x. Show that

$$\forall x\varphi(x) \to \psi \vdash \forall x(\varphi(x) \to \psi)$$

does not hold in general (give specific formulas $\varphi(x)$ and ψ for which it fails).

5. Show that the following formula cannot be proved:

$$P(a) \lor \forall x (R(x, a) \to \exists y (P(x) \land R(x, y)))$$

- \star 6. Using just the language of equality =, give formulas expressing the following conditions on structures (i.e. sets) A:
 - (a) A is not empty.
 - (b) A has at least n elements (for an arbitrary natural number n).
 - (c) A has at most n elements (for an arbitrary natural number n).