Solutions to Homework #10

6. Each line below combines a number of steps. In the first step I rename all variables that are "different," and use the fact that for arbitrary formulas η and θ , $\neg(\eta \rightarrow \theta)$ is equivalent to $\eta \land \neg \theta$. In the last step, there is flexibility in the order in which you bring quantifiers to the front.

$$\neg(\exists x \ \varphi(x,y) \land (\forall y \ \psi(y) \to \varphi(x,x)) \to \exists x \ \forall y \ \sigma(x,y))$$

$$\begin{array}{ll} \equiv & \exists z \; \varphi(z,y) \land (\forall w \; \psi(w) \to \varphi(x,x)) \land \neg \exists u \; \forall v \; \sigma(u,v) \\ \equiv & \exists z \; \varphi(z,y) \land (\exists w \; \neg \psi(w) \lor \varphi(x,x)) \land \forall u \; \exists v \; \neg \sigma(u,v) \\ \equiv & \exists z \; \varphi(z,y) \land \exists w \; (\neg \psi(w) \lor \varphi(x,x)) \land \forall u \; \exists v \; \neg \sigma(u,v) \\ \equiv & \exists z, w \; \forall u \; \exists v \; (\varphi(z,y) \land (\neg \psi(w) \lor \varphi(x,x)) \land \neg \sigma(u,v)). \end{array}$$

7. Let \mathcal{M} be any structure. I need to show that

$$\mathcal{M} \models \exists x \; (\varphi(x) \to \forall y \; \varphi(y)).$$

Applying Lemma 2.4.5, this amounts to showing that there is an element a in the universe of \mathcal{M} such that either $\mathcal{M} \models \neg \varphi(\bar{a})$ or $\mathcal{M} \models \forall y \varphi(y)$.

If $\mathcal{M} \models \forall y \varphi(y)$, then we are done; any element *a* of the universe of \mathcal{M} will do. (Remember, we are assuming that our structures have nonempty universes.) Otherwise, $\mathcal{M} \not\models \forall y \varphi(y)$, which is to say, it is not the case that for every *b* in $|\mathcal{M}|$, $\mathcal{M} \models \varphi(\bar{b})$. In other words, for some *b* in $|\mathcal{M}|$, $\mathcal{M} \models \varphi(\bar{b})$. In other words, for some *b* in $|\mathcal{M}|$, $\mathcal{M} \models \neg \varphi(\bar{b})$. In that case, we can take a = b, and again we're done.

Alternatively, you can use the transformations in Section 2.5 to show that the following are all equivalent:

$$\begin{aligned} \exists x \; (\varphi(x) \to \forall y \; \varphi(y)) \\ \exists x \; (\neg \varphi(x) \lor \forall y \; \varphi(y)) \\ \exists x \; \neg \varphi(x) \lor \forall y \; \varphi(y) \\ \neg \forall x \; \varphi(x) \lor \forall y \; \varphi(y) \\ \neg \forall x \; \varphi(x) \lor \forall x \; \varphi(x) \end{aligned}$$

Clearly the last formula is valid.

- 11. a. $\forall x \ (Cow(x) \rightarrow EatsGrass(x))$
 - b. $\exists x (Car(x) \land Blue(x) \land Old(x))$
 - c. $\neg \exists x (Car(x) \land \neg Pink(x))$
 - d. $\forall x \ (Car(x) \land Old(x) \rightarrow MustBeInspectedAnnually(x))$

14. To separate \mathfrak{A}_1 and \mathfrak{A}_2 , let σ say that there is a smallest element:

$$\exists x \; \forall y \; (x \leq y).$$

To separate \mathfrak{A}_2 and \mathfrak{B} , let σ say that between any two elements, there is another element:

$$\forall x, y \ (x < y \to \exists z \ (x < z \land z < y))$$

where x < y abbreviates $x \leq y \land \neg(x = y)$.

15. σ "says" that there is something that is comparable with every element. Let \mathfrak{A} and \mathfrak{B} be the posets below:

In other words, \mathfrak{B} is the poset with two incomparable elements, and \mathfrak{A} is the poset with two elements, one of which is less than the other. Then $\mathfrak{A} \models \sigma$ and $\mathfrak{B} \models \neg \sigma$. (For \mathfrak{A} , the 1-element poset would also work.)

- 19. a. $Prime(x) \equiv x \neq 0 \land x \neq S(0) \land \forall y, z \ (x = y \times z \rightarrow y = x \lor z = x)$
 - b. $OddSquare(x) \equiv \exists y \ (x = y \times y) \land \exists z \ (x = (z + z) + 1)$
 - c. $ThreePrimeFactors(x) \equiv \exists u, v, y, z \ (x = u \times v \times y \times z \wedge Prime(u) \wedge Prime(v) \wedge Prime(y) \wedge u \neq v \wedge u \neq y \wedge v \neq y)$

Once again, there are many reasonable variations of these.