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Corollary 7.2.4 Each of the class of finite groups, finite rings, finite partial
orders, etc. is not definable in first-order logic.

A few simple observations will allow us to answer another question from
Chapter 5. Note that if a class of structures is definable by a finite set of
sentences {¢1,..., @k}, then it is defined by a single sentence 1 A ... A @.
And if a class of structures is defined by a single sentence o, the complement
of that class is defined by —o. So we can conclude, for example,

Corollary 7.2.5 The class of infinite structures in the language of equality
cannot be defined by any finite set of sentences.

If it could, then the class of finite structures would be definable, contrary to
the corollary above. (You can find additional information on “finite axiom-
atizability” on page 116 of van Dalen.)

For another application of the compactness theorem, let us consider an
example from graph theory. Remember that a graph is a structure A4 =
(A, R) satisfying

Vx =R(z,x) AVz,y (R(z,y) — R(y,z)).

(As usual, I am being bad by using R for both the symbol in the first-order
language and for the relation it denotes in A. I trust that by now you can
tell the difference.) The elements of A are called the vertices of the graph,
and, if ¢ and b are vertices, we say that there is an edge between a and b
if and only if R(a,b) holds. A path from a to b is a (finite!) sequence of
vertices a,...,a, such that a; = a, a,, = b, and for each i < n, R(a;, a;11).
A graph is said to be connected if there is a path between every two vertices.

Theorem 7.2.6 The class of connected graphs is not definable in first-order
logic.

Proof. In other words, the theorem says that there is no set of sentences I
in the language of graph theory such that the models of I" are exactly the
connected graphs. For the sake of contradiction, let us suppose otherwise;
i.e. suppose I does define the class of connected graphs.

First, note that with first-order logic, it s possible to write down a
formula ¢, (x,y) which says “there is a path of length n from z to y”. The
following does the trick:

Az, (=2 ANzn =y AR(z1,22) A .. AR(2n—1,21)).
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Pick two new constants, ¢ and d, and add them to the language. Let A be
the following set of sentences:

ru {_'900(07 d)v_'(;pl(ca d)v .- }

I claim that every finite subset of A is satisfiable. To see this, let A’ be a
finite subset of A. Then for some n, A’ is included in the set

LU {~po(c,d),...,pn(c,d)}.

To get a model of A’, one only need find a connected graph with two elements
that are not connected by a path of length n+1, and then let ¢ and d denote
these two elements. For example, one can just cook up a graph ay,...,ap4+1
with an edge from each a; to a;41 and nothing more, let ¢ denote a;, and
let d denote ap41.

By compactness, A has a model. Let A be the reduct of this model to
the original language (just drop the denotions of ¢ and d). Since A satisfies
I, it is a connected graph. On the other hand, since the expanded structure
models

{=po(c,d),...,~pn(c,d)}

there is no path between the elements denoted by ¢ and d, a contradiction.
O

A variation of this trick allows us to show that things like the class
of torsion groups and well-orderings are not definable. If you don’t know
what these are, don’t worry about it. Let us now use a similar argument to
“construct” a nonstandard model of arithmetic.

Theorem 7.2.7 Let N be the structure (N,0, S, +, X, <). There is a struc-
ture M such that

o I is elementarily equivalent to N
e I is not isomorphic to N

Proof. Let L be the language of M, and L' be L together with a new constant
c. Let T be the following set of sentences in L':

Th(M) U {0 < ¢,S(0) < ¢, S(S(0)) < c,...}.

Every finite subset TV of T' has a model of the form (N, 0,5, +, x,<,m),
where m is a natural number that is large enough to satisfy the finitely
many sentences involving ¢ in I''. By compactness, I' has a model,

A= (A,0% 8%, +2 2 <2 A,



