80-310/610 Logic and Computation Fall 2001

* 3.

* B.

HOMEWORK #4
Due Wednesday, September 19

Read section 1.4 of the Enderton handout, which discusses unique read-
ability for propositional formulas. Start reading section 1.3 of van Dalen.

Consider the following inductive definition of the set of all “AB-strings”:

e (), the empty string, is an ab-string
e if s is an AB-string, so is fi(s)

e if s is an AB-string, so is fa(s).

In the “correct” interpretation, the underlying set U is a set of strings,
and f; and f5 are functions that prepend the letters “A” and “B” re-
spectively. However, if instead we take U’ to be the set of strings of stars
(e.g. “¥HHHE7) et f1 be a function that prepends one star, and let fa be
the function that prepends two stars, then the smallest subset of U’ the
contains ) and is closed under fi; and f5 is not generated freely.

Come up with better functions fi; and fs, so that they still act on the
underlying set U’, but make the resulting set of “ab-strings” freely gen-
erated.

Recall the definition of “arithmetic expressions” I gave in class:

e any string of digits that doesn’t start with “0” is an arithmetic
expression

2

e if s and t are arithmetic expressions, so is “(s+1t)” (more precisely,

Wi~ "~ M AL WU\
(7S

e if s and ¢ are arithmetic expressions, so is “(s x t)”.

Let length(s) denote the length of s, and let val(s) denote the evaluation
function I defined in class. Prove by induction that for every expression
s, the inequality val(s) < 10/"9tM(s) holds.

What would happen to the previous theorem if we were to add expo-
nentiation, a T b7

The set of propositional formulas in prenex form is defined inductively,
as follows (the underlying set consists of strings of variables and logical
symbols):



* 7.

10.
% 11.
o 12.

o 13.

e | is a prenex formula

e any variable p; is a prenex formula

e if ¢ is a prenex formula, so is -y

e if p and ¥ are prenex formulas, so is Ay

e if p and ¥ are prenex formulas, so is Vi

e if v and ¢ are prenex formulas, so is —
Intuitively, this is just another notation for propositonal formulas in
which the connectives come in front of the arguments, instead of in

between them. For example, one writes Ap1ps instead of (p; Ap2). Notice,
however, that in this representation no parentheses are used.

a. Convert V= — Apipaps A paps to a regular propositional formula.
b. Convert ((p1 A p2) — p3) V (-ps — p1) to a prenex formula.

¢. Define a function recursively that maps prenex propositional formulas
to regular ones (you can assume that the set of prenex formulas is
freely generated).

d. Define a function recursively that maps regular propositional formu-
las to prenex ones.

Do problems 1 and 2 on page 14 of van Dalen.

Do problem 3 on page 14. In other words, show that if ¢ is a subformula
of 1, and ) is a subformula of 6, then ¢ is a subformula of . (Hint: say
that a subset A of PROP is “closed under subformulas” if whenever a
formula ¢ is in A, every subformula of ¢ is also in A. Show by induction
formulas 6, that the set of subformulas of 6 is closed under subformulas.)

Do problem 4 on page 14. In other words, show that if ¢ is a subformula
of 1 and 6g, 01, ..., 0; is a formation sequence for v, then for some ¢ < k,
@ = 0;. Be precise: use the definitions of PROP, formation sequences,
and subformulas presented in class.

Do problem 5 on page 15.

Do problems 6 and 7 on pages 14-15 of van Dalen.
Do problem 9 on page 15 of van Dalen.

Do problem 11 on page 15.

Definition 2.3.1 says that C' is freely generated (as a subset of U), if,
when restricted to C, each f; is injective and the ranges of the f;’s are
disjoint from each other and from B. Certainly, if the functions f; have



o 14.

o 15.

o 16.

these properties on U, they also have it on C; but give an example
where the functions do mot have these properties on U, but C' is still
freely generated.

Generalize the recursion theorem (2.3.2) so that in defining F(s) one
can use all elements of C' that are “shorter” than s (for a given “length”
function).

Prove unique readability for prenex formulas, i.e. that the set of prenex
formulas is freely generated. This amounts to showing that there is only
one way to “parse” a given formula.

In the programming language of your choice, define a data structure to
represent propositional formulas as trees. (That is, a propositional for-
mula is either a variable, or an operation with pointers to its arguments).
Write a parser for propositional formulas, that is, a program that takes
a string as input and turns it into a parse tree. The routine should print
“ok” if successful, or “error” if the string is not a formula.

Now write routines that convert a formula to prenex form; that take
an assignment of truth values to the variables as input and determine
whether or not the resulting formula is true; and that determine whether
there is any assignment that makes the formula true.



