HOMEWORK #12Due Wednesday, November 28

- 1. Continue reading sections 3.2 and 3.3 in van Dalen, in conjunction with the class notes.
- * 2. Assuming $\theta(x)$ and η are any formulas and x is not free in η , prove $\exists x \ \theta(x) \to \eta$ from $\forall x \ (\theta(x) \to \eta)$.
- * 3. Suppose φ and $\psi(x)$ are any formulas, and x is not free in φ . Prove

$$(\varphi \to \exists x \ \psi(x)) \leftrightarrow \exists x \ (\varphi \to \psi(x))$$

using the following steps:

- a. First prove the \leftarrow direction.
- b. From $\exists x \ \psi(x)$, prove $\exists x \ (\varphi \to \psi(x))$.
- c. From $\neg \exists x \ \psi(x)$ and $\varphi \rightarrow \exists x \ \psi(x)$, conclude $\exists x \ (\varphi \rightarrow \psi(x))$. (Hint: from the hypotheses, show that φ implies *anything*.)
- d. Put parts (b) and (c) together with a proof of $\exists x \ \psi(x) \lor \neg \exists x \ \psi(x)$ (you don't have to write out the latter) to obtain a proof the \rightarrow direction.

Note that this \rightarrow direction of this problem, together with problem 11, are used in the proof of van Dalen's Lemma 3.1.7.

- 4. Show that any maximally consistent set of sentences is a theory.
- * 5. Suppose T is a maximally consistent theory. Prove that φ is in T if and only if $\neg \varphi$ is not in T.
 - 6. Suppose T is a maximally consistent theory. Prove that $\varphi \to \psi$ is in T if and only if either φ is not in T, or ψ is in T. You may use the previous two problems.
- \circ 7. Do problem 1 on page 112.
- 8. Do problem 2 on page 112.
- \circ 9. Do problems 3 and 4 on page 112.
 - 10. Consider the following two statements of the completeness theorem:

Version A: If Γ is any consistent set of sentences, then Γ has a model.

Version B: If Γ is any set of sentences, φ is any sentence, and $\Gamma \models \varphi$, then $\Gamma \vdash \varphi$.

Show *directly* that these two statements are equivalent, i.e. that each one implies the other. (Hint: to show that B implies A, take φ to be \perp .)

- * 11. Let L_1 , L_2 , and L_3 be languages, with $L_1 \supseteq L_2 \supseteq L_3$. (In other words, L_1 has all the constant, function, and relation symbols of L_2 , and possibly more; and similarly for L_2 and L_3 .) Suppose T_1 , T_2 , and T_3 are theories in the languages L_1 , L_2 , and L_3 respectively. Show that if T_1 is a conservative extension of T_2 , and T_2 is a conservative extension of T_3 , then T_1 is a conservative extension of T_3 . (You can find the definition of "conservative extension" on page 106 in van Dalen, Definition 3.1.5.)
 - 12. Do problems 1 through 5 on page 118–119.
- \star 13. Let (0, 1) denote the open interval of real numbers between 0 and 1:

$$(0,1) = \{ x \in \mathbb{R} \mid 0 < x < 1 \}.$$

Let [0,1] denote the closed interval

 $[0,1] = \{ x \in \mathbb{R} \mid 0 \le x \le 1 \}.$

Let $(0,\infty)$ denote the positive real numbers,

$$(0,\infty) = \{ x \in \mathbb{R} \mid x > 0 \}.$$

- a. Show that $\langle (0,1), < \rangle$ is isomorphic to $\langle (0,1), > \rangle$, by exhibiting a bijective function from (0,1) to (0,1) and proving that it is an isomorphism of the two structures. Note that the underlying language has a single binary relation r that is interpreted as < in the first structure and > in the second.
- b. Show that $\langle (0,1), < \rangle$ is isomorphic to $\langle (0,\infty), < \rangle$. (Hint: consider the function $f(x) = \frac{x}{1-x}$.)
- c. Show that $\langle (0,1), \rangle$ is *not* isomorphic to $\langle [0,1], \rangle$. (Hint: use Lemma 3.3.3 in van Dalen, and find a sentence that is true in one structure but false in the other.)
- * 14. Let $\mathcal{P} = \langle P, \langle \rangle$ be a linear ordering. \mathcal{P} is said to be a *well-ordering* if every nonempty subset of P has a least (minimum) element. Note that $\langle \mathbb{N}, \langle \rangle$ has this property, so you can think of elements of a well-ordering as "generalized numbers" (a.k.a. "ordinals").

- a. Show that the structure ${\mathcal B}$ in exercise 14 on page 91 of van Dalen is a well-ordering.
- b. Do problem 6 on page 119. In other words, use the suggestion to show that there is no set of sentences Γ such that the models of Γ are exactly the well-orderings.