


• Recall that	HTTP	is	request/response	protocol
• AJAX allows	you	to	do	HTTP	request/response	within	
a	page,	but	it	is	still	request/response

• A	client	always	has	to	initiate	communication.
– I.e.	Make	the	request

• What	if	you	want	the	server	to	be	able	to	"push"	
information	down	to	the	client,	for	example:
– New	email
– New	news
– Updates	to	a	shared	chat	/	drawing	canvas
– Game	events

©	Joe	Mertz	– Mobile	to	Cloud:	Building	Distributed	Applications



• Workarounds have	been	devised
• E.g.	Polling

– Client continuously	polls	the	server	
• E.g.	Long	Polling

– Client	sends	a	request,	which	the	server	does	not	respond	to	
until	it	has	something	to	send

– If	something	comes	along	to	send,	it	completes	the	response	
and	the	client	will	immediately	send	a	new	request	to	hold	on	
to	for	later

– If	the	request	times	out,	the	client	sends	a	new	response.
– Analogy	(from	the	days	of	postal	mail)…

• Cheap	friend	can't	afford	stamps.
• Send	friend	stamp,	he	uses	it	to	send	you	a	letter
• When	you	receive	message,	immediately	send	him	another	stamp	for	
the	next	time	he	wants	to	send	a	letter.

©	Joe	Mertz	– Mobile	to	Cloud:	Building	Distributed	Applications



• Provides	for	true two-way ongoing communication	
between	a	client	and	server.

• Each	side	can	"send"	messages.
• Each	side	has	listener	"on	message"
• WebSockets are	not	restricted	by	the	Same	Origin	
Policy
– It is	up	to	the	server	to	check	the	Origin	header	and	decide	
whether	it	should	reply	or	not.

• Note:
– Some	old browsers	don't implement	WebSockets

©	Joe	Mertz	– Mobile	to	Cloud:	Building	Distributed	Applications



// Create a new WebSocket
var wSocket = new WebSocket("ws://www.example.com/socketserver")

// When the WebSocket is connected and ready
wSocket.onopen = function (event) {

// Send a message to the server
wSocket.send("Initial message to the server.");

};

// Handler for when a message arrives from the server
wSocket.onmessage = function (event) {

console.log(event.data);
};

©	Joe	Mertz	– Mobile	to	Cloud:	Building	Distributed	Applications



©	Joe	Mertz	– Mobile	to	Cloud:	Building	Distributed	Applications

• Require	a	WebSockets module
– ws is	very	popular
– https://www.npmjs.com/package/ws

• Create	a	new	WebSockets Server
• Define	handlers	for
– on	connection
– on	message

• And	sendmessages	to	the	client



• Library for	full-duplex	communication	between	
clients	and	servers

• Built	on	engine.io,	socket.io provides	an	
abstraction	above	whatever	transport	methods	
are	available in	the	browser:
–WebSockets
– Long	Polling

©	Joe	Mertz	– Mobile	to	Cloud:	Building	Distributed	Applications



• Also	provides	a	simple	abstraction	for event-based	
programming	across	the	server	and	multiple	
clients

• Clients	can
– emit	events	back	to	the	server
– listen	for	events	from	the	server

• Server	can	
– listen for	events	from	clients
– emit	events	back	to	the	client
– emit	events	to	other	clients
– broadcast	emit	events	to	all	clients

©	Joe	Mertz	– Mobile	to	Cloud:	Building	Distributed	Applications



• At	each	table,	create	a	game
• An	event	is	simply		a	word

– It	can	optionally	be	accompanied	with	a	short	phrase
• One	person	is	the	Server	who	can:

– listen for	events	from	clients
– emit	an	event	to	one	client	(point	to	one	and	say…)
– broadcast emit	events	to	all clients	(point	with	both	hands	and	
say…)

• The	rest	at	the	table	are	Clients	who	can
– emit	events	to	the	server
– listen	for	events	from	the	server

• Clients	or	the	Server	can	generate	events	at	any	time	
(depending	on	your	game-play)

• Clients	cannot	emit	events	peer-to-peer	(Server	must	relay)
©	Joe	Mertz	– Mobile	to	Cloud:	Building	Distributed	Applications



• on(event,	function(parameter-object)	{	…	}
• emit(event,	parameter-object)
• events
– connection
– disconnect
– developer-defined	events

©	Joe	Mertz	– Mobile	to	Cloud:	Building	Distributed	Applications



• socket.emit(…)
– emits	back	to	the	client

• socket.broadcast.emit(	…	)
– emits	to	all	connected	clients	except	the socket	that	
starts	it

©	Joe	Mertz	– Mobile	to	Cloud:	Building	Distributed	Applications



• Demo
• Code	walkthrough		

©	Joe	Mertz	– Mobile	to	Cloud:	Building	Distributed	Applications



1. Add	a	welcome	message	to	countPlayers
–When	a	new	player	connects
– Server	emits	a	"welcome"	event	to	it

• Data	of	the	event	is	{message:	"Welcome	player	n"}
– Where	"n"	is	the	ordinal	number	of	the	player	who	has	joined

2. Create	a	simple	app	in	which	users	collaborate	/	
compete	/	communicate.
– Actions	by	each	user	is	broadcast	to	all	users
– Periodically	(e.g.	every	one	second)	server	broadcasts	

something	to	all	users

©	Joe	Mertz	– Mobile	to	Cloud:	Building	Distributed	Applications


