
Slide 1

Copyright © Wyyzzk, Inc. 2004
Version 5.0

Testing the Architecture

Slide 2

Copyright © Wyyzzk, Inc. 2004
Version 5.0

Testing Architecture - 2

Lesson Description
This lesson discusses a variety of metrics
that may be used to test the architecture,
including coupling, cohesion, and stability.
It also discusses other ways of testing the
architecture including CRC cards and
making the architecture executable.

Slide 3

Copyright © Wyyzzk, Inc. 2004
Version 5.0

Testing Architecture - 3

Lesson Goal
Participants will be able to test the
goodness of their architecture using a
variety of techniques and metrics.

Slide 4

Copyright © Wyyzzk, Inc. 2004
Version 5.0

Testing Architecture - 4

Lesson Objectives
Upon completion of the lesson, the
participant will be able to:

Understand the steps of assessing
architecturally significant use cases.
Test the architecture by making it executable
Test the architecture with CRC cards
Measure the architecture using the metrics for
coupling, cohesion, and stability

Slide 5

Copyright © Wyyzzk, Inc. 2004
Version 5.0

Testing Architecture - 5

Lesson Outline
Testing the Architecture

Metrics to measure goodness
• Coupling
• Cohesion
• Stability

CRC card session
Making the architecture executable

Summary

Slide 6

Copyright © Wyyzzk, Inc. 2004
Version 5.0

Testing Architecture - 6

Testing the Architecture
After selecting one or more candidate
architectures, you will test the choices to
determine which is best
The two primary ways of testing an architecture
are :

Mathematical
Using requirements

The tests can be applied by individuals or as part
of a design review

Slide 7

Copyright © Wyyzzk, Inc. 2004
Version 5.0

Testing Architecture - 7

Goodness of an Architecture
A good architecture exhibits the same
characteristics as a good object model

They are stable, easy to maintain, and
flexible to change
This is good because most systems will be
maintained for far longer than the time it took
to develop them to begin with

Slide 8

Copyright © Wyyzzk, Inc. 2004
Version 5.0

Testing Architecture - 8

Goodness of an Architecture
Each subsystem should be strongly cohesive,
loosely coupled, and stable in the face of change
One of the most well known sets of metrics for
OO classes is:

Chidamber, S. and C. F. Kemerer, “A Metrics Suite for
Object Oriented Design”, IEEE Transactions on
Software Engineering, 20, (6): 476-493, (June 1994).
http://www.pitt.edu/~ckemerer/CK%20research%20pa
pers/MetricForOOD_ChidamberKemerer94.pdf

Slide 9

Copyright © Wyyzzk, Inc. 2004
Version 5.0

Testing Architecture - 9

Goodness of an Architecture
In this section we are going to look at older
software engineering metrics, from the
70’s, dealing with good basic techniques

These are more appropriate at the architecture
level where we are working with components
and subsystems rather than individual classes

Slide 10

Copyright © Wyyzzk, Inc. 2004
Version 5.0

Testing Architecture - 10

Coupling and Cohesion
Two important concepts when evaluating an
architecture are coupling and cohesion.
Both are concepts for software engineering in
general. They help to evaluate the design of
modules.
Coupling describes the relationship between
modules.
Cohesion describes the relationship within
modules.

Slide 11

Copyright © Wyyzzk, Inc. 2004
Version 5.0

Testing Architecture - 11

Coupling and Cohesion
Coupling

refers to the extent to which one component uses
another
should be minimal

Cohesion
refers to the extent to which the actions of a
component are tied together
should be maximal

Summary "Low Coupling, High Cohesion"

Slide 12

Copyright © Wyyzzk, Inc. 2004
Version 5.0

Testing Architecture - 12

Coupling
Coupling is determined by examining the
number of dependencies (imports
relationship) between subsystems

Dependencies limit reusability
• A subsystem cannot be reused without reusing the

subsystems on which it depends.
Strive for loose coupling (few connections)
between subsystems

Slide 13

Copyright © Wyyzzk, Inc. 2004
Version 5.0

Testing Architecture - 13

Types of Dependency
There are two basic types of dependency:

Structural
• A structural dependency between Packages

indicates some type of static model association
between the Classes in the two Packages

Usage
• A usage dependency indicates that an operation in

a Class in one Package has, as a variable, a
member of a Class belonging to another Package.

Slide 14

Copyright © Wyyzzk, Inc. 2004
Version 5.0

Testing Architecture - 14

Structural Dependency
You find Structural Dependencies by examining
the declarations of classes in a subsystem
If a class in one subsystem references a class in
another subsystem in one of these ways:

Sub Classing
Association
Attribute

Then the two subsystems have a structural
dependency

Slide 15

Copyright © Wyyzzk, Inc. 2004
Version 5.0

Testing Architecture - 15

Structural Dependency
Sample Code

public class Ledger
{
private Account

MyAccount;
public void Credit() { };
public void Debit() { };
}

Ledger has a structural
dependency on Account
If Ledger and Account are
in different subsystems,
those subsystems will
have a structural
dependency as well

Slide 16

Copyright © Wyyzzk, Inc. 2004
Version 5.0

Testing Architecture - 16

Structural Dependency
Diagram Example

Personal has a structural
dependency on Ledgers
Branch has a structural
dependency on Ledgers
Inheritance and aggregation are
both structural dependencies

Account

Interest

Accounting Dept

Ledgers

Personal

Branch

Fee

Slide 17

Copyright © Wyyzzk, Inc. 2004
Version 5.0

Testing Architecture - 17

Usage Dependencies
You find Usage Dependencies by examining the
operations of classes in a subsystem
You have a usage dependency if a class in one
subsystem has an operation which uses an
instance of a class in another subsystem
This instance can appear as:

An operation parameter
A return type
A local variable of the operation

Slide 18

Copyright © Wyyzzk, Inc. 2004
Version 5.0

Testing Architecture - 18

Operation Parameter
public class Ledger {
public void Credit(Account myaccount, money amount) { };
public void Debit(Account myaccount, money amount) { };
}

Account is passed as a parameter in
Ledger’s operations

Slide 19

Copyright © Wyyzzk, Inc. 2004
Version 5.0

Testing Architecture - 19

Return Type
Public class Ledger
{ public Account GetAccount (string key) { };
}

Ledger knows about Account because it is
a return type

Slide 20

Copyright © Wyyzzk, Inc. 2004
Version 5.0

Testing Architecture - 20

Local variable of the operation
public class Ledger
{
public Money GetBalance(string key) {

Account theAccount;
theAccount = Database.GetAccount (key);
return theAccount.GetBalance();}

}

The Ledger creates a new Account object every
time that the GetBalance() operation is called

Slide 21

Copyright © Wyyzzk, Inc. 2004
Version 5.0

Testing Architecture - 21

Usage Dependencies and Subsystem
Operations

If you do not yet have classes in the subsystems, then
examine the subsystem operations for usage
dependencies

Notice the parameter basictypes::customerInfo
This notation indicates that basictypes is the name of another
subsystem

Create Customer Account (basictypes::customerInfo, limit) : account number
Credit Account (account number, amount)
Debit Account (account number, amount)
Pay Sales Tax (quarter)

«subsystem»
Accounting

This example shows that Accounting has a dependency on the subsystem basictypes. It is

a usage dependency.

Slide 22

Copyright © Wyyzzk, Inc. 2004
Version 5.0

Testing Architecture - 22

Dependencies create coupling
It didn’t matter whether we built a structural or a
usage dependency; the Ledger could not be
reused without the Account
The dependency between ledger and account is
a coupling between them, and therefore a
coupling between their subsystems
If there is only one coupling between the
subsystems, they are weakly coupled

the more relationships there are between subsystems,
the stronger the coupling

This is where just looking at a diagram is not enough. On the diagram, we draw one

dependency relationship between subsystems, no matter how many classes or operations

are coupled. You have to look at the actual operations of the subsystem or the attributes

and operations of the classes inside the subsystems, and count how many relationships

there are between the subsystems.

Slide 23

Copyright © Wyyzzk, Inc. 2004
Version 5.0

Testing Architecture - 23

Interfaces and coupling

«subsystem»
Accounting

CreditAccount (account, amount): boolean

DebitAccount (account, amount) : boolean

EstablishCredit (creditReport, amount) : account

«interface»
Ledger

«subsystem»
OrderManagement

One of the primary reasons for using interfaces is to decouple subsystems or components

so that they are dependent on the interface and not each other. Notice that there is no

direct coupling between Accounting and Order Management.

The relationship between Accounting and Ledger is realizes or implements. We also say

that Accounting provides the Ledger interface. This is a weak coupling because we can

change the interfaces that Accounting provides without making any other changes to

Accounting. Providing an interface means that a subsystem is exposing (or making

public) some part of its functionality. The subsystem could be implemented without an

interface or with many interfaces. The way interfaces are defined is completely

independent of how the operations are implemented inside the subsystem. If the

operations of the interface change, we could change the Accounting subsystem, or we

could change the relationship so that Accounting no longer implements Ledger.

The relationship between OrderManagement and Ledger is uses. We also say that

OrderManagement requires the Ledger interface. This is a stronger coupling than the

realizes interface. In this case, OrderManagement cannot do its job without the Ledger

interface. The implementation of OrderManagement depends on these exact operations

in the interface. If the interface changes or the operations in the interface change, we will

almost certainly have to change the implementation of OrderManagement as well.

Slide 24

Copyright © Wyyzzk, Inc. 2004
Version 5.0

Testing Architecture - 24

Varieties of Coupling
Coupling can arise for different reasons.
Some reasons are acceptable, some are
not. The following is a list from poor to
good:

Internal Data Coupling
Global Data Coupling
Control Coupling
Parameter Coupling
Subclass Coupling

Slide 25

Copyright © Wyyzzk, Inc. 2004
Version 5.0

Testing Architecture - 25

Varieties of Coupling
Internal Data Coupling: One module
manipulates local data of another module.
Difficult program reasoning!
Global Data Coupling: Two modules depend on
a common global data structure. Also: Difficult
program reasoning.
Control Coupling: The order in which operations
of one module are to be performed is controlled
not by itself but by another module.

Internal data coupling – think friend relationships in C++

Global Data coupling – like Cobol and other non-OO languages, to share data you define

global data types. There are often good reasons to do this, but its use should be

minimized, and the shared data types need to be defined early and not changed. Because

they will be tightly coupled to large portions of the application, changes to shared data

types will cause widespread changes in the application. The same is true for shared

function libraries.

Control coupling - this is the standard controller class. Popular in some methodologies

such as OOSE, it is typically frowned upon in traditional OO methods because it creates

relatively strong coupling between the controller and the classes it controls. Again, it is

something commonly used, and there can be very good reasons for it. Just know that

choosing this approach creates relatively strong coupling, which implies that changes to

one part of your application will impact other parts of the application. This needs to be

well documented, especially in situations where the impact on other subsystems is not

obvious.

Slide 26

Copyright © Wyyzzk, Inc. 2004
Version 5.0

Testing Architecture - 26

Varieties of Coupling
Parameter Coupling: One modules uses
services from another. In this case parameters
are passed. This kind of coupling is clean and
can be checked.
Subclass Coupling: A child can be treated as if
it were (an instance of) its parent. Whether it is
good or bad design depends on the kind of
subclassing.

Parameter coupling – very common and necessary. Very easy to see in the code and to

check for.

Subclass coupling – common in OO, but often overused. When used correctly inheritance

(or subclassing) is a powerful technique. When used poorly, subclassing causes problems.

Slide 27

Copyright © Wyyzzk, Inc. 2004
Version 5.0

Testing Architecture - 27

Class Relationships
The relationships between classes are ranked
from weak to strong:

Generalization / Realization
Dependency
Association
Aggregation
Composition

A good object-oriented design will use the
weakest relationships possible.

This makes the system easier to modify and reduces
the impact of changes to the system.

The stronger the relationship between things, the tighter the coupling.

Also, the more relationships between things, the tighter the coupling.

This is showing class relationships. The stronger the relationship between classes, the

tighter the coupling between the classes. If the classes are in two different subsystems,

then the tighter the coupling between classes, the tighter the coupling between the

associated subsystems.

Slide 28

Copyright © Wyyzzk, Inc. 2004
Version 5.0

Testing Architecture - 28

Cohesion
COHESION is the degree to which the
responsibilities of a single subsystem are
functionally related
A subsystem is said to be strongly cohesive
if the elements in that unit exhibit a high
degree of functional relatedness

This means that every element in the
subsystem should be essential for that
subsystem to achieve its purpose

Slide 29

Copyright © Wyyzzk, Inc. 2004
Version 5.0

Testing Architecture - 29

3 properties of Cohesion
Subsystems that are strongly (functionally)
cohesive demonstrate three properties, in
order of importance:

The elements within the Subsystem are closed
against the same type of change
The elements within the Subsystem are reused
together
The elements within the Subsystem share
common functions

Slide 30

Copyright © Wyyzzk, Inc. 2004
Version 5.0

Testing Architecture - 30

Common Closure
The elements within the Subsystem are all subject to the
same types of changes, and immune to other kinds of
changes

You have to consider the kinds of changes you might want to
make in your application

• port to a new platform
• change the database
• add functionality
• be able to customize for particular clients

Changes that impact one Subsystem should not ripple
through the other Subsystems

This is considered to be an excellent design principle, especially at the architectural level.

Slide 31

Copyright © Wyyzzk, Inc. 2004
Version 5.0

Testing Architecture - 31

Common Reusability
The Subsystem is reused as an entity

The elements within it are inseparable
Reusing an element within the Subsystem
will cause all of the elements in the
Subsystem to be reused.

Slide 32

Copyright © Wyyzzk, Inc. 2004
Version 5.0

Testing Architecture - 32

Common Function
The elements within the Subsystem
cooperate together to render some usable
service(s) to other Subsystems

Slide 33

Copyright © Wyyzzk, Inc. 2004
Version 5.0

Testing Architecture - 33

Varieties of Cohesion
Like coupling, cohesion can arise for different
reasons. Some reasons are acceptable, some
are not. The following is a list from poor to good:

Coincidental Cohesion
Logical Cohesion
Temporal Cohesion
Communication Cohesion
Sequential Cohesion
Functional Cohesion
Data Cohesion

Slide 34

Copyright © Wyyzzk, Inc. 2004
Version 5.0

Testing Architecture - 34

Varieties of Cohesion
Coincidental Cohesion: Poor design. Often
result of "partioning" of larger program. In OO:
classes with unrelated methods.
Logical Cohesion: Logical connection, but no
data or control connection. Example: a library of
mathematical functions (sine, cosine,..).
Temporal Cohesion: Operations are to be
performed at the same time. Example:
initialization modules.

Coincidental cohesion – a subsystem full of unrelated things. You put them together

because you couldn’t decide where else to put the things. This is like looking at the

people walking by on a street in a city. Most of them have no relationship to each other

except that coincidentally they happen to be walking on the same street at the same time.

Logical cohesion – common in function libraries

Temporal cohesion – related by time and otherwise the functions have no relationship.

Not uncommon to have one subsystem like this for something like the startup of a

system.

Slide 35

Copyright © Wyyzzk, Inc. 2004
Version 5.0

Testing Architecture - 35

Varieties of Cohesion
Communication Cohesion: Operations, data
access the same device or data. Example:
manager modules.
Sequential Cohesion: Operations are to be
performed in a certain order. Often to avoid
control coupling which is even worse.
Functional Cohesion: Operations contribute to
one single function. Desirable kind of cohesion.
Data Cohesion: Data abstraction. A module
exports functions with which its internal data can
be accessed.

Communication cohesion – any kind of controller of a device or data.

Functional cohesion – a functional subsystem

Data cohesion – tradition object oriented module with data and the functions that use it.

For subsystems, it is even better if the functions are exported as interfaces.

Sequential cohesion – you get this by attempting to remove a controller class. You can

see this in state driven subsystems or classes, where the state changes are embedded

inside the class or subsystem instead of in an external controller.

Slide 36

Copyright © Wyyzzk, Inc. 2004
Version 5.0

Testing Architecture - 36

Constantine’s Criteria for Cohesion
Larry Constantine says: Given a sentence that
specifies a module:

1. If the sentence contains a comma or more than
one verb, the module probably has sequential or
communicational cohesion.

2. If it contains words such as "first", "then", "after"
the module probably has sequential or temporal
cohesion.
Example: "Wait for the instant teller customer to
insert a card, then prompt for the PIN."

Slide 37

Copyright © Wyyzzk, Inc. 2004
Version 5.0

Testing Architecture - 37

Constantine’s Criteria
3. If the predicate does not contain a single,

specific object the module is probably
logically cohesive.
Example: "Edit all data."

4. If it contains words such as "initalize" or
"cleanup" the module probably has
temporal cohesion.

Slide 38

Copyright © Wyyzzk, Inc. 2004
Version 5.0

Testing Architecture - 38

Stability
Another important measure of a subsystem is its
stability

This refers to the impact of change on a particular
subsystem
One of the most important things to do when
constructing an architecture is to create subsystems
which encapsulate things that you expect to change
We need to minimize the impact of those changes on
the rest of the system

Slide 39

Copyright © Wyyzzk, Inc. 2004
Version 5.0

Testing Architecture - 39

Stability
Stability measures help us find the parts of the
architecture that are most sensitive to change

Then we can design those parts so they won’t have to
change often
This reduces the impact of change on the system

When evaluating subsystems for stability, we look
at two features:

How many subsystems depend on it?
How many other subsystems does it depend on?

Slide 40

Copyright © Wyyzzk, Inc. 2004
Version 5.0

Testing Architecture - 40

Responsible
Responsibility measures how many
subsystems depend on a particular
subsystem

Packages with many dependents are called
responsible
Packages with no dependents are called
irresponsible

Slide 41

Copyright © Wyyzzk, Inc. 2004
Version 5.0

Testing Architecture - 41

Dependent
Dependence measures how many other
subsystems does a particular subsystem
depend on

Packages with many dependencies are called
dependent
Packages with few dependencies are called
independent

Slide 42

Copyright © Wyyzzk, Inc. 2004
Version 5.0

Testing Architecture - 42

The Stability Band
One useful technique is to
graph where your
subsystem lies based on
the its responsibility and
dependency levels, as
shown on the right
Most subsystems will lie in
the green band

Independent…..Dependent

Responsible
.
.
.

Irresponsible

Stable

Unstable

Slide 43

Copyright © Wyyzzk, Inc. 2004
Version 5.0

Testing Architecture - 43

Stable Subsystems
Stable subsystems are both independent
and responsible

Since so many subsystems depend on them it
is difficult to change them without causing lots
of other changes in the system
Since they are not dependent on other
subsystems they are seldom changed.

Slide 44

Copyright © Wyyzzk, Inc. 2004
Version 5.0

Testing Architecture - 44

Unstable Subsystems
Unstable subsystems are both dependent
and irresponsible

Since no subsystems depend on them, they
can be changed without affecting the rest of
the application
Since they depend on other subsystems, they
will frequently have to change because of
changes to the subsystems on which they
depend.

Slide 45

Copyright © Wyyzzk, Inc. 2004
Version 5.0

Testing Architecture - 45

Design Tip
Always make your
dependencies in the
direction of stability.
Each subsystem
should only depend
on subsystems which
are at least as stable
as it is.

Slide 46

Copyright © Wyyzzk, Inc. 2004
Version 5.0

Testing Architecture - 46

Goodness Metrics
Now that we know what is good about an
architecture, we will look at some basic metrics
you can use on a particular architecture to
measure its goodness. These are:

Relational Cohesion
Afferent Coupling
Efferent Coupling
Abstractness
Instability
Distance from the Main Sequence
Normalized distance from the Main Sequence

Slide 47

Copyright © Wyyzzk, Inc. 2004
Version 5.0

Testing Architecture - 47

Relational Cohesion
Cohesion inside a subsystem:
H = (R + 1) / N

R = Number of Relationships between Classes within the Subsystem
N = Number of Classes within the Subsystem

H closer to 0 shows low cohesion in the subsystem
H around 1 is good cohesion
H greater than 1 is strong cohesion, but the classes inside the

subsystem may be too tightly coupled for a good design

Slide 48

Copyright © Wyyzzk, Inc. 2004
Version 5.0

Testing Architecture - 48

Afferent Coupling Metric
How strongly other subsystems are
dependent on this subsystem

Ca = sum (Classes in other subsystems that
depend on Classes within this subsystem)

These dependencies can be structural (Association, aggregation or
inheritance) or Usage
The larger Ca is, the stronger the coupling

Slide 49

Copyright © Wyyzzk, Inc. 2004
Version 5.0

Testing Architecture - 49

Efferent Coupling Metric
How strongly this subsystem depends on
other subsystems

Ce = sum (Classes in other subsystems upon which
Classes within this subsystem are dependent)

These dependencies can be structural (Association, aggregation or
inheritance) or Usage
The larger Ce is, the stronger the coupling

Slide 50

Copyright © Wyyzzk, Inc. 2004
Version 5.0

Testing Architecture - 50

Strong coupling vs.
type of coupling

It is not just the
number of
couplings that
we want to
restrict; it is the
kinds of
coupling that
need to be
restricted.

Abstract Subsystems
should have low Ce and
higher Ca
Concrete Subsystems
should have low Ca and
higher Ce

Slide 51

Copyright © Wyyzzk, Inc. 2004
Version 5.0

Testing Architecture - 51

Abstractness Metric
How abstract is the subsystem
A = # of Abstract Classes in the Subsystem

Classes in the Subsystem

An abstract class is defined as any class that contains at least one
pure virtual function

A will vary from 0 to 1
The closer to 1 A becomes, the more abstract the subsystem is
The closer to 0 A becomes, the more concrete the subsystem is

Slide 52

Copyright © Wyyzzk, Inc. 2004
Version 5.0

Testing Architecture - 52

Instability Metric
How unstable is the subsystem?

I = Ce / (Ce + Ca)

I will vary from 0 to 1
The closer to 1 I becomes, the less stable the subsystem is
The closer to 0 I becomes, the more stable the subsystem is

Slide 53

Copyright © Wyyzzk, Inc. 2004
Version 5.0

Testing Architecture - 53

Distance from Main
Sequence Metric

Abstract subsystems should also be stable,
concrete subsystems should also be
unstable

D = abs (A + I -1) / sqrt(2)

D ranges from 0 to ~0.7
The closer D is to 0, the closer the subsystem matches the abstract
vs. stability ideal

Slide 54

Copyright © Wyyzzk, Inc. 2004
Version 5.0

Testing Architecture - 54

Normalized Distance
from Main Sequence

Same as previous, but normalized
D’ = abs (A + I -1)

D’ ranges from 0 to ~1
The closer D’ is to 0, the better

Slide 55

Copyright © Wyyzzk, Inc. 2004
Version 5.0

Testing Architecture - 55

Test Architecture with Requirements
Besides the mathematical metrics, you may
want to use your requirements to test your
architecture

The metrics were used to measure correctness
Testing with use cases and other requirements
measures completeness

Slide 56

Copyright © Wyyzzk, Inc. 2004
Version 5.0

Testing Architecture - 56

Testing the Architecture
We need to verify that the architecture we
selected will support the application we are
developing
One technique you can use is a CRC card
type session with your use cases
(requirements) and subsystems

Slide 57

Copyright © Wyyzzk, Inc. 2004
Version 5.0

Testing Architecture - 57

CRC cards
CRC stands for: Class - Responsibility -
Collaboration
They were originally introduced by Kent
Beck and Ward Cunningham in 1989
They are a technique for assigning
responsibilities and collaborations to
classes or other entities

Slide 58

Copyright © Wyyzzk, Inc. 2004
Version 5.0

Testing Architecture - 58

The CRC card itself

Class Name
Responsibilities Collaborators

Slide 59

Copyright © Wyyzzk, Inc. 2004
Version 5.0

Testing Architecture - 59

CRC card details
The CRC card is a 3x5 index card
The name of the class goes on the top
A vertical line separates the rest of the card
into 2 parts

the left side is for responsibilities
the right side is for other classes which
collaborate with this class to accomplish the
responsibility on the left

Slide 60

Copyright © Wyyzzk, Inc. 2004
Version 5.0

Testing Architecture - 60

A CRC card session
to test an Architecture

Take a stack of index cards and write the
names of the subsystems you have already
found across the top, one class per card
Draw a line down the middle

labeling the sections is optional
Hand out the cards to a group of people

engineers, business analysts, whoever is
responsible for the requirements of the system

Slide 61

Copyright © Wyyzzk, Inc. 2004
Version 5.0

Testing Architecture - 61

A CRC card session (cont.)
Have a leader (who has no cards)

this person will read through each use case
basic flow, step by step

For each step, determine which subsystem
is responsible for that behavior

write that behavior on the left side of the card
for that subsystem
if another subsystem has to help out, write it’s
name on the right side as a collaborator

Slide 62

Copyright © Wyyzzk, Inc. 2004
Version 5.0

Testing Architecture - 62

A CRC card session (cont.)
If the behavior does not go to any existing
card create a new card for that behavior

you will frequently find new subsystems during
a CRC card session

If there is a disagreement about which
subsystem should have a particular
behavior, the subsystems may need to be
redefined

Note: I often do this same exercise using Sequence diagrams. It is the same exercise,

whether you are using index cards or sequence diagrams. CRC card sessions work well

with a group, sequence diagrams are typically an individual or pair of people effort. It is

hard to do sequence diagrams as a group. Though you can make it work by having one

person draw the sequence diagram (on a whiteboard, or using a computer and UML tool,

and projecting the screen for all to see), one person read off the use case, and the rest of

the people decide what to draw.

Slide 63

Copyright © Wyyzzk, Inc. 2004
Version 5.0

Testing Architecture - 63

Testing Other Scenarios
After working with the basic flows, decide which
alternatives are important or complex enough that
you need to assign them to subsystems as well
Go through the same process as you did with the
basic flows
Also, look at your non-functional requirements
and assign them to subsystems

You will likely find that you need to create new
subsystems to handle the non-functional requirements

Non-functional requirements are Usability, Reliability, Performance, and Security

Slide 64

Copyright © Wyyzzk, Inc. 2004
Version 5.0

Testing Architecture - 64

Measure of success
Things are going well if:

all the responsibilities for one subsystem fit on
one 3x5 index card

• If one card is not enough, the subsystem is too big
and needs to be split

every card has some responsibility on it
• If a card has no responsibilities, why do you have it?

– perhaps some responsibilities need to be moved from
other cards

– perhaps this card is not needed

Slide 65

Copyright © Wyyzzk, Inc. 2004
Version 5.0

Testing Architecture - 65

Measure of Success
You must be able to allocate all of your use cases
and requirements to subsystems in your
architecture

you may need to add new subsystems to
handle some of the behavior

• how does this change your architecture?

Slide 66

Copyright © Wyyzzk, Inc. 2004
Version 5.0

Testing Architecture - 66

Measure of Success
If a set of subsystems work together to accomplish a use
case or requirement, there must be communication paths
(dependency relationships) between the subsystems

You should end up with an acyclic directed graph of all
of your subsystems

At the end of this exercise, you may decide to change
your architecture to one of the alternatives you previously
considered

Or you may decide that the architecture you picked
works just fine

Slide 67

Copyright © Wyyzzk, Inc. 2004
Version 5.0

Testing Architecture - 67

Avoiding Circular Imports
It is desirable that the package hierarchy be
acyclic
This means that the following situation should be
avoided (if possible)

Package A uses Package B which uses Package A
Such a circular dependency means that
Packages A and B will effectively have to be
treated as a single package

Slide 68

Copyright © Wyyzzk, Inc. 2004
Version 5.0

Testing Architecture - 68

Avoiding Circular Imports
Circles wider than two packages must also
be avoided

e.g., Package A uses Package B which uses
Package C which uses Package A

Circular dependencies may be able to be
broken by splitting one of the packages into
two smaller packages

Slide 69

Copyright © Wyyzzk, Inc. 2004
Version 5.0

Testing Architecture - 69

Avoiding Circular Imports (cont.)

ClientPackage SupplierPackage

ClientPackageA

SupplierPackage

ClientPackageB

Slide 70

Copyright © Wyyzzk, Inc. 2004
Version 5.0

Testing Architecture - 70

CRC using Static
Architecture Diagrams

The CRC card exercise can be done as
described using index cards

The requirements or use cases for the
subsystem are written on the index card

Or you might do the same exercise using
your static architecture diagrams

Update the diagrams as you go along by
adding use cases, interfaces, or operations to
your subsystems

Like the sequence diagrams, this approach usually works best for an individual or a pair

of people. Hard to do with a large group. Even more difficult than doing the exercise

using sequence diagrams with a large group.

Slide 71

Copyright © Wyyzzk, Inc. 2004
Version 5.0

Testing Architecture - 71

Making the Architecture Executable
Another way to test the architecture is to make an
executable from the architecture and run it
We need to determine how to convert the
architecture into executable code
To do this, identify the architecturally significant
use case(s) and implement a thread which
exercises all architectural layers

Architecturally significant use cases are those which
determine what the architecture will be
Usually they are the important and complex use cases

Slide 72

Copyright © Wyyzzk, Inc. 2004
Version 5.0

Testing Architecture - 72

Implementing Subsystems
There are no subsystem type structures in
Java
But all we really care about are the
implementation parts of the subsystem

The realization of a subsystem is the part that
implements the subsystem operations,
interfaces, and use cases (specification)
The realization of a subsystem is composed of
classes and nested subsystems

Slide 73

Copyright © Wyyzzk, Inc. 2004
Version 5.0

Testing Architecture - 73

Implementing Subsystems
Start by allocating classes from the analysis
model to the subsystems of the architecture
These classes will be part of the realization of the
subsystem

If the subsystem implements any interfaces, the
operations in the interfaces must be implemented by
the classes that realize the subsystem

Slide 74

Copyright © Wyyzzk, Inc. 2004
Version 5.0

Testing Architecture - 74

Implementing Subsystems
If there are subsystem operations, those operations
must be implemented by the classes that realize the
subsystem
If the subsystem specification includes use cases, the
use cases must be implemented by the classes that
realize the subsystem

As you allocate the operations and use case
behavior to the classes in the subsystem, you will
most likely add classes to the subsystem

Slide 75

Copyright © Wyyzzk, Inc. 2004
Version 5.0

Testing Architecture - 75

Public Classes of a Subsystem
Classes that can be called from outside the
subsystem are public

The classes that implement subsystem interfaces and operations
will be public classes
These classes are considered to be exported from the subsystem

Some of your analysis classes will be in the
public part of the subsystem
You may add more classes to the public part to
handle the interfaces, operations, and
specification of the subsystem

Slide 76

Copyright © Wyyzzk, Inc. 2004
Version 5.0

Testing Architecture - 76

Private Classes of a Subsystem
Some classes will not be visible from outside the
subsystem

These classes are part of the implementation of the subsystem,
but not part of the interface
These classes are considered private to the subsystem

Some of the analysis classes will be private,
since they do not have operations corresponding
to the specification of the subsystem
You will add more classes to the private part of
the subsystem as you continue with design

Slide 77

Copyright © Wyyzzk, Inc. 2004
Version 5.0

Testing Architecture - 77

Simplifying Assumptions
What we care about right now are the public
classes of the subsystem
Create the class headers for all the public classes
of all the subsystems
For now assume everything runs in one process
on one computer

Slide 78

Copyright © Wyyzzk, Inc. 2004
Version 5.0

Testing Architecture - 78

Simplifying Assumptions
You can create simple implementations of the
functions, to show the communication paths
through the architecture

a function in one class calls a function in another class, which
maybe just prints its name

This will allow you to actually run some tests
tracing paths through the architecture
Remember you are not building your application,
just putting together the framework of the
architecture

Slide 79

Copyright © Wyyzzk, Inc. 2004
Version 5.0

Testing Architecture - 79

Evaluate Results
You have created an architectural proof-of-
concept
Now evaluate the Architectural Proof-of-Concept
to determine whether the critical architectural
requirements are feasible and can be met (by this
or any other solution)

Slide 80

Copyright © Wyyzzk, Inc. 2004
Version 5.0

Testing Architecture - 80

Application Framework
Now that you have a working framework, you can
add to it and modify it according to the needs of
your application

For example, what if you decide to make the
application multi-process?

• Once you have decided which subsystems belong in which
processes, you can change the simple function call interfaces to be
inter-process communication channels

• Now you can test just the inter-process communication part of your
application

• Once that works, the next step might be to put the processes on
different computers and add CORBA

Slide 81

Copyright © Wyyzzk, Inc. 2004
Version 5.0

Testing Architecture - 81

Summary
We looked at a variety of ways of evaluating an
architecture
Mathematical metrics measure coupling,
cohesion, and stability of a subsystem.
Coupling refers to the connections between
subsystems.
Cohesion is the consistency within a subsystem.
Stability measures the impact of change on a
subsystem.

Slide 82

Copyright © Wyyzzk, Inc. 2004
Version 5.0

Testing Architecture - 82

Summary
We can also use the requirements to test the
architecture.
A CRC card session uses index cards for each
subsystem.

A leader reads use cases and non-functional
requirements, which are assigned to the various cards
This can also be done using an architecture diagram
rather than index cards

Alternatively, we can make the architecture
executable and run tests to see if the
architecturally significant use cases are handled.

