
Slide 1

Copyright © Wyyzzk, Inc. 2004
Version 5.0

Creating a Project Architecture

Slide 2

Copyright © Wyyzzk, Inc. 2004
Version 5.0

Project Architecture - 2

Lesson Description
This lesson describes how to create a
project architecture.

Slide 3

Copyright © Wyyzzk, Inc. 2004
Version 5.0

Project Architecture - 3

Lesson Goal
Participants will understand how to create
an architecture using a variety of common
software architectural patterns, including
layered, client/server, 3 tier, web, and
object oriented.

Slide 4

Copyright © Wyyzzk, Inc. 2004
Version 5.0

Project Architecture - 4

Lesson Objectives
Upon completion of the lesson, the
participant will be able to:

Describe the process of creating a project architecture
Describe several common software architectural
patterns, including layered, client/server, 3 tier, web,
and object oriented
Determine in which situation to use each pattern

Slide 5

Copyright © Wyyzzk, Inc. 2004
Version 5.0

Project Architecture - 5

Lesson Outline
Creating a Project Architecture
Identify components
Identify Architectural Patterns
Assign responsibilities to components
Complete the 4+1 Views

Slide 6

Copyright © Wyyzzk, Inc. 2004
Version 5.0

Project Architecture - 6

Creating a Project Architecture
1. Identify components, bottom-up and/or top-
down
2. Realize the architecturally significant use
cases using components on sequence diagrams
3. Add relationships and operations to
components
4. Create the physical architecture
5. Convert the subsystems into processes and
threads on the hardware
6. Add data model, analysis model, policies, and
mechanisms as appropriate
7. Document the architecture

Slide 7

Copyright © Wyyzzk, Inc. 2004
Version 5.0

Project Architecture - 7

Identifying Components
When creating a project architecture, one
way to start is by identifying components

A component is any nearly independent part of
the system that is internally cohesive

Use commonality, variability, and kinds of
change

There are different approaches to creating a project architecture. In this section, we will

look at a “bottom-up” approach and a “top-down” approach.

In a bottom-up approach, you start by identifying components, then determine how they

will relate to each other. In a top-down approach, you start by identifying overall patterns

for the architecture, then determine what components are needed to implement the

patterns. Most architects do both at the same time, trying out different ideas until they are

happy with the result.

When identifying components, consider commonality, variability, and kinds of change.

Isolating areas that change is an important part of any architecture.

Slide 8

Copyright © Wyyzzk, Inc. 2004
Version 5.0

Project Architecture - 8

Commonality
Group shared things into components

Libraries
Functions
Data

Things that are shared in the application (libraries, functions, data) may be put into one or

more components that are shared in the application. So you look for common things and

create components to hold them. This gives you a single point of maintenance for things

that are shared, which is very desirable. Look at the lesson on product line architectures

for examples of this approach.

Slide 9

Copyright © Wyyzzk, Inc. 2004
Version 5.0

Project Architecture - 9

Variability
Put each variation in a component

Platform
Edition
Version

Look at the application for areas that vary from a common base. Each variation can be

made into a component that shares the common base functionality. Refer to the lesson on

product line architectures for examples of this approach.

Slide 10

Copyright © Wyyzzk, Inc. 2004
Version 5.0

Project Architecture - 10

Kinds of Change
Identify kinds of change

Data
Features
Look and feel

Group things that change together
Adding features – make component for each
feature
Customizing UI – make component for UI

A thing way to approach architecture is to consider what kind of changes might be

required to the code in the future. In the best architecture, a particular kind of change

should take place (as much as possible) within one component. Kinds of changes could

be changes to the data (format change, change of database, addition or deletion of fields),

changes to features (adding or deleting features, custom features, locking or unlocking

features), or changes to the look and feel (change of UI colors, adding logos,

internationalization).

So if the most common kind of change to your application is the addition of new features,

then you might want a design with some basic service type components, then add a

component for each feature. A feature component would include all the UI for that

feature, the business rules, and the code to access the database (if not its own database).

On the other hand, if your most common change is to the user interface, then you would

put all of the user interface together in a component, which is used by other components

of the system whenever interaction with the user is desired.

Slide 11

Copyright © Wyyzzk, Inc. 2004
Version 5.0

Project Architecture - 11

Example: Commonality & Variability

Framework

Enterprise Components

Product Family Components

Product 1 Product 2 Product 3

Having identified some components, we may later put those components into one or more

of the common architectural patterns. If you start with an architectural pattern, then you

have to identify the components of the pattern. In either approach, you end up with an

overall pattern, and components that are meaningful to your application.

Slide 12

Copyright © Wyyzzk, Inc. 2004
Version 5.0

Project Architecture - 12

Subsystems
A subsystem is a kind of a package with some
additional semantics

Operations
• a list of operations that specify the behavior of the subsystem

Specification
• a set of use cases with their interfaces, constraints, and

relationships that specify the behavior of the subsystem
Realization

• described by nested subsystems and classes, along with their
interfaces, constraints, and relationships

Collaborations describe the operations and use cases

We start to document the components of the architecture using subsystems. At this point

we are working at Bredemeyer’s conceptual level. We show the component name, and

assign responsibilities to the component.

slide 13

Copyright © Wyyzzk, Inc. 2004
Version 5.0

Project Architecture - 13

Subsystems (cont.)
A subsystem can implement one or more
interfaces
A subsystem can have constraints attached
to it

Slide 14

Copyright © Wyyzzk, Inc. 2004
Version 5.0

Project Architecture - 14

Package icon with
subsystem stereotype

Specification of subsystem
with use cases

Subsystem Representation

Establish Credit Update Account

Pay Taxes

«subsystem»
Accounting

A subsystem is more than a name; it also has responsibilities. One way to indicate the

responsibilities of a subsystem is by assigning use cases to the subsystem. This shows

that the subsystem has to provide code to implement these use cases.

Slide 15

Copyright © Wyyzzk, Inc. 2004
Version 5.0

Project Architecture - 15

Subsystem operations

Subsystem Representation (cont.)

Create Customer Account (name, address, limit) : account number
Credit Account (account number, amount)
Debit Account (account number, amount)
Pay Sales Tax (quarter)

«subsystem»
Accounting

Another way to indicate the responsibilities of a subsystem is by assigning operations to

the subsystem. This shows that the subsystem has to provide code to implement these

operations.

Slide 16

Copyright © Wyyzzk, Inc. 2004
Version 5.0

Project Architecture - 16

Subsystem Representation (cont.)
Specification of subsystem
with interface

«subsystem»
Accounting

CreditAccount (account, amount): boolean

DebitAccount (account, amount) : boolean

EstablishCredit (creditReport, amount) : account

«interface»
Ledger

Another way to indicate the responsibilities of a subsystem is by showing that it

implements one or more interfaces. This shows that the subsystem has to provide code to

implement the operations in the interfaces.

There is a subtle difference between assigning operations to a component and having the

component implement an interface. If operations are assigned to a component, the

operations are part of the component. However, an interface is separate from the

component, so you can plug any component into the interface as long as the component

provides an implementation for the interface. This is one way to implement a plug-in

architecture.

Slide 17

Copyright © Wyyzzk, Inc. 2004
Version 5.0

Project Architecture - 17

Diagramming the Architecture
Create a subsystem for each architectural
component.
Write a brief description of what the subsystem is
responsible for.
Assign responsibilities to the subsystems with
use cases, operations, or interfaces.
Use sequence diagrams to determine
dependency relationships between subsystems
and to create the interfaces.

We will look at assigning responsibilities, creating sequence diagrams, and creating

relationships between components later in the lesson. For now, we just create a basic

diagram with the components and write descriptions for each.

Slide 18

Copyright © Wyyzzk, Inc. 2004
Version 5.0

Project Architecture - 18

Create a Subsystem per component

«subsystem»

Order Management

«subsystem»

Inventory

«subsystem»

Accounting

«subsystem»

Order Database

«subsystem»

System Access

Slide 19

Copyright © Wyyzzk, Inc. 2004
Version 5.0

Project Architecture - 19

Foundation
Classes

global

Global Packages
Certain packages are used by all subsystems

Foundation classes
• Sets, lists, queues, etc.

Error handling classes
These packages are marked global

You do not have to show any relationships to global packages. Putting the notation

“global” on the package indicates that all other subsystems (packages) can use this

package.

Slide 20

Copyright © Wyyzzk, Inc. 2004
Version 5.0

Project Architecture - 20

Write a brief description
of each subsystem

System Access – This subsystem controls who
can access the system
Order Management - This subsystem knows
about orders and all the functions associated with
orders.
Inventory - This subsystem knows about products
and interfaces to the inventory control system.
Accounting - This subsystem knows about
accounts and interfaces to the accounting
system.
Order Database - This subsystem knows how to
make information persistent and how to retrieve
that information later.

Slide 21

Copyright © Wyyzzk, Inc. 2004
Version 5.0

Project Architecture - 21

Creating an Architecture from Patterns
Other engineering disciplines use a general set of
steps to develop an architecture

Step 1: Select the basic architecture
• includes the components of the architecture, the basic

responsibilities of the components, and the basic relationships
between the components

Step 2: Organize the key abstractions of the
application into the components of the architecture
Step 3: Develop the interactions between the
components

This process is based around the idea of starting with a pattern for the architecture and

developing it further with specifics for your application. We are still working on getting

a set of components for our architecture.

Slide 22

Copyright © Wyyzzk, Inc. 2004
Version 5.0

Project Architecture - 22

Building Example
Step 1: Select the basic architecture

Turreted mansion
Step 2: Organize the key abstractions of the
application into the components of the
architecture

West wing
• Guest quarters, Guest bath

East Wing
• Family quarters, Kids bath, Master bath, Master bedroom

North Turret
• Gallery

Slide 23

Copyright © Wyyzzk, Inc. 2004
Version 5.0

Project Architecture - 23

Building Example (cont.)
Step 3: Develop the interactions between
the components

The wings and turrets will all have halls
connecting them to the central court
The kitchen will adjoin the dining room
etc.

Slide 24

Copyright © Wyyzzk, Inc. 2004
Version 5.0

Project Architecture - 24

Apply the steps
These same steps can be applied to any software
application
You may try more than one pattern for your
application before finding the best fit
Note the alternatives in your architecture
document and why you rejected them

Changes in requirements may make one of these
alternatives feasible later
Or one of the alternatives might be useful for another
product in the same line of business

Slide 25

Copyright © Wyyzzk, Inc. 2004
Version 5.0

Project Architecture - 25

Apply the Steps (cont.)
Having selected a pattern, assign
responsibilities to the components of the
architectural pattern you selected
Then define the interfaces between the
components

We will go through the top-down approach to the same point as the bottom-up –

identifying and describing components. Once we have reached that point, both methods

continue the same way, by continuing to refine the components of the architecture. The

difference in top-down and bottom-up is just how you go about selecting the components

to begin with.

Slide 26

Copyright © Wyyzzk, Inc. 2004
Version 5.0

Project Architecture - 26

Architectural Patterns
When determining the architecture for a
system, it is convenient to review a variety
of architectural patterns for possible fit
An architectural pattern has been created
to solve a particular kind of problem.
The architectural pattern gives us the basic
structure, which we put our application into.

Slide 27

Copyright © Wyyzzk, Inc. 2004
Version 5.0

Project Architecture - 27

Architectural Patterns
An Architectural Pattern expresses the
fundamental organization of a software
system. It provides:

A pre-defined set of subsystems
Responsibilities for each subsystem
Rules and guidelines for organizing
associations and interactions between the
subsystems

Slide 28

Copyright © Wyyzzk, Inc. 2004
Version 5.0

Project Architecture - 28

Example Architectural Patterns
There are several well known architectural patterns for
software.

We will examine 5 common types in this class:
• Layered
• client/server
• 3 tier
• web
• object oriented

Some other common types we won’t cover:
• pipe and filter, stovepipe, MVC, blackboard, publish

and subscribe

There are quite a number of basic architectural patterns identified. See for example:

Pattern-Oriented Software Architecture, Volume 1: A System of Patterns; Frank

Buschmann, Regine Meunier, Hans Rohnert, Peter Sommerlad, Michael Stal – and

Software Architecture: Perspectives on an Emerging Discipline; Mary Shaw, David

Garlan

Slide 29

Copyright © Wyyzzk, Inc. 2004
Version 5.0

Project Architecture - 29

Architectural Patterns (cont.)
Each of these architectural patterns has strengths
and weaknesses

For any project, there will be a set of patterns that
works well for that application, and another set that is
not a good fit
The architecture that you select depends on:

• the nature of the project,
• the expected growth path of the application
• the priorities established for the project

Architecture can mean the hardware, software, or
both. We are only considering the software for
now.

Slide 30

Copyright © Wyyzzk, Inc. 2004
Version 5.0

Project Architecture - 30

Some Architectural Patterns
In the rest of this section, we’ll look at some
common architectural patterns

Common uses
The components
The responsibilities of the components
The interactions between components
Examples
Strengths and weaknesses of the pattern

One way to pick an architectural pattern is to find one that is commonly used for your kind of

application. For example, if you are working on writing a new operating system, you will

certainly consider a layered architecture for the project, because layered architectures are

commonly used for operating systems. You could invent some other architecture, but a layered

architecture is known to work very well for this kind of application and you will have plenty of

other problems to solve where you can apply your skill and creativity. Don’t reinvent the wheel if

you don’t have to. By using what is known to work, you eliminate certain categories of failure

points from your application. Each architectural pattern is good for certain things (it solves

certain problems) and not so good for others.

Slide 31

Copyright © Wyyzzk, Inc. 2004
Version 5.0

Project Architecture - 31

Layered Architecture
Common Uses

Operating Systems, Network software, Frameworks
Components

Layers and interfaces
Responsibilities

Each layer contains functionality at the same level of
abstraction
Each layer has an interface which defines the services
provided by the layer

Interactions
Each layer only interacts with the layer below it

Slide 32

Copyright © Wyyzzk, Inc. 2004
Version 5.0

Project Architecture - 32

Example: General Layered Architecture

Domain Model
Domain-Dependent Framework

Application-specific

Base Operating System
Networking

Isolation from hardware

Persistent Object Store
Distributed Object
Management

Data base & distribution

Domain-Independent Framework
Application Environment
GUI/Desktop Environment

Cross application

If the application specific layer needs something at the operating system level, the request

has to go first to the cross-application layer, then to the database and distribution layer,

then finally to the OS layer. The response has to return by the same path (but in reverse).

Slide 33

Copyright © Wyyzzk, Inc. 2004
Version 5.0

Project Architecture - 33

Example: Air Traffic Control System

Domain
Specific

Domain
Independent

Common
ATC Code

Customer
Specific

Source: ACM

Hardware, OS, COTS

CAATS, MAATS, etc...
Man-Machine Interface

External systems Off-line tools
Test harnesses

HATS Components

ATC Functional areas:
Flight Management,

Sector Management, etc.

ATC Framework
Aeronautical classes

ATC classes

Distributed Virtual Machine

Support Mechanisms:
Communication, Time, Storage,

Resource management, etc.

Basic elements

Bindings
Common utilities

Low-level services

This example was shared with me by a good friend at Rational Software who worked on

the system. It was also written up for the ACM.

CAATS = Canadian Air Air Traffic System

HATS = ? Air Traffic System

You see here that you can look at the layers a couple of different ways. One is to specify

layers that are domain independent (not part of an air traffic control system) versus those

that are specific to the domain. Another way of looking at it is to say that some layers are

common across all air traffic control systems, and others are specific to a particular

customer. Both viewpoints may be needed at various points in time.

ATC = Air Traffic Control

OS = Operating System

COTS = Commercial Off The Shelf

ACM = Association for Computing Machinery

Slide 34

Copyright © Wyyzzk, Inc. 2004
Version 5.0

Project Architecture - 34

Example: Network Protocols
The International

Standards Organization
defined a 7 layer model
for network
communications.

Application

Presentation

Session

Transport

Network

Data Link

Physical

Layered architectures are quite common, as you see from the several examples presented

here. Note that the communication is always to one layer below. There is no

communication that skips around a layer. The rule for layered architecture is that each

layer only communicates with the layer directly below it.

Slide 35

Copyright © Wyyzzk, Inc. 2004
Version 5.0

Project Architecture - 35

Strengths & Weaknesses of Layered
Architecture

Strengths
Changes can generally
be accomplished within
a single layer
Portability,
maintenance,
upgrades, etc. are
easier since they
usually only require
replacing a single layer

Weaknesses
Execution speed may
be slower due to the
indirection caused by
having each level
process (or relay) the
command

Slide 36

Copyright © Wyyzzk, Inc. 2004
Version 5.0

Project Architecture - 36

Client / Server Architecture
Common Uses

Business software
Components

Client and Server
Responsibilities

Client is the presentation software
Server provides the rules and data store

Interactions
Client gets data from users and passes it to server
Server sends results back to client to display

Slide 37

Copyright © Wyyzzk, Inc. 2004
Version 5.0

Project Architecture - 37

Categories of Software
In most software projects, there are 3 major
categories of software, which are represented in
the graph below.

In a client/server system, we split the software
apart somewhere in the continuum

Part of the software goes into a client process, the rest
goes into a server process

Presentation Logic Data

Slide 38

Copyright © Wyyzzk, Inc. 2004
Version 5.0

Project Architecture - 38

Client/Server vs Mainframe
A mainframe system is a kind of client/server
architecture.
On a terminal/mainframe configuration, the
software is divided between the terminal and the
mainframe at the point indicated.

Presentation Logic Data

Slide 39

Copyright © Wyyzzk, Inc. 2004
Version 5.0

Project Architecture - 39

Client/Server vs Mainframe
In client/server, the software can be divided at any point.
The most common dividing points are shown below.

At point A, client/server works just like mainframe.
Point B is a more standard client/server configuration.

Presentation Logic Data

a b c d e

At point A, you have a dumb terminal with all the processing done on the server

At point B, all of the presentation software is on the client

this enables sophisticated GUI’s without interaction with the server

At point C, some application logic resides on the client

At point D, you have a thick client with a database server. The transaction monitor may

move to the client, or all transactions may be handled inside the database.

At point E, some of the database moves to the client, usually in the form of client-side

caching of data.

There is a great description of these architectures in the book Enterprise Computing with

Objects; Shan, Earle.

Slide 40

Copyright © Wyyzzk, Inc. 2004
Version 5.0

Project Architecture - 40

How to split the software?
Deciding where to split the software
between the client machine and the server
machine depends on a couple of issues:

The processing power of the client and the
server
The amount of software that can be shared by
multiple users
The desired execution speed of the application

Slide 41

Copyright © Wyyzzk, Inc. 2004
Version 5.0

Project Architecture - 41

Strengths & Weaknesses of
Client/Server

Strengths
A lot of flexibility in where to
divide the software between
processes
Often the client just handles
the presentation tier so it’s
easy to change the look and
feel of the application
Relatively simple to code

Weaknesses
Possibility of very slow
execution speed due to
volume of transactions
between processes
This can be mitigated by
moving processing to the
client, but that in turn makes
distribution of upgrades and
maintenance of the client
more difficult.

Slide 42

Copyright © Wyyzzk, Inc. 2004
Version 5.0

Project Architecture - 42

3 Tier Architecture
Common Uses

Business applications
Components

Presentation, Application, Database
Responsibilities

Presentation - the user interface
Application - the business rules
Database - storage and retrieval of persistent data

Interactions
The Presentation tier only interacts with the Application tier
The Application tier only interacts with the database

Slide 43

Copyright © Wyyzzk, Inc. 2004
Version 5.0

Project Architecture - 43

Business Applications
Most business applications

are built with a 3 tier
architecture

The presentation tier allows
the user to view results and
/ or the information in
specific business objects
The application tier contains
the rules for manipulating
the business objects
The database tier contains
the business objects

Presentation

Application Logic

Database

Slide 44

Copyright © Wyyzzk, Inc. 2004
Version 5.0

Project Architecture - 44

Strengths and Weaknesses
of 3 Tier Architecture

Strengths
Since the presentation layer
is separated from the
database by the application
tier it is easy to change the
look and feel or the
database with relatively
minor effects on the rest of
the application
Leads to a consistent user
interface across the whole
application

Weaknesses
Usually requires some kind
of transaction management
service to track transactions
from presentation tier to
database
Changes in functionality
typically require changes to
all 3 tiers of the architecture

Slide 45

Copyright © Wyyzzk, Inc. 2004
Version 5.0

Project Architecture - 45

Web Architecture
Common Uses

Business software
Components

Web Client and Web Server
Responsibilities

Client is the presentation software
Server provides the rules and data store

Interactions
Client gets data from users and passes it to server
Server sends results back to client to display

This is just a quick introduction to web architecture. There is another whole lecture on

just web architectures.

Slide 46

Copyright © Wyyzzk, Inc. 2004
Version 5.0

Project Architecture - 46

Basic Web Architecture
The basic web architecture is client/server.

A web browser runs on the client
• Internet Explorer
• Netscape

A web server runs on the server
• IIS
• Apache

The client and server communicate using the
http protocol

Slide 47

Copyright © Wyyzzk, Inc. 2004
Version 5.0

Project Architecture - 47

Basic Web Architecture

Joe:User

Linux:File
System

GetFile (Filename)

GetPage (Filename)

Open (URL)

RenderPage (HTML)

HTML

«process»

InternetExplorer
«process»

Apache

HTML

Slide 48

Copyright © Wyyzzk, Inc. 2004
Version 5.0

Project Architecture - 48

Web vs Mainframe
The web is very much like a mainframe
architecture

A thin, stateless client
A server that does all the processing

Presentation Logic Data

Slide 49

Copyright © Wyyzzk, Inc. 2004
Version 5.0

Project Architecture - 49

Strengths & Weaknesses of Web
Strengths

Since the client just handles
the presentation tier so it’s
easy to change the look and
feel of the application
Relatively simple to code
Very easy to supply
updates of client side
software
Very secure if web client
does no processing

Weaknesses
Possibility of very slow
execution speed due to
volume of transactions
between processes
This can be mitigated by
moving processing to the
client, but that in turn makes
distribution of upgrades and
maintenance of the client
more difficult and makes the
application less secure

Slide 50

Copyright © Wyyzzk, Inc. 2004
Version 5.0

Project Architecture - 50

OO Architecture
Common Uses

Application software
Components

Each component is created around a major piece of
data and the associated functionality

Responsibilities
Each component is responsible for providing access,
create, update, delete functionality for its data

Interactions
Minimal interactions between components

Slide 51

Copyright © Wyyzzk, Inc. 2004
Version 5.0

Project Architecture - 51

OO Example

Security

Encrypt (key, data) :coded

Decrypt (key, coded) :data

Location

TimeToHorizon (satId): time

Triangulate (loc1, loc2, loc3, satId) : location

Commands

Rotate (satId, degrees) : command

Tilt (satId, degrees) : command

Slide 52

Copyright © Wyyzzk, Inc. 2004
Version 5.0

Project Architecture - 52

Strengths and Weaknesses
of OO Architecture

Strengths
Since data is
encapsulated, changes
to data or
implementation of the
functions are localized

Weaknesses
Changes to system
level functionality (use
cases) tend to be
spread over a large
part of the application

Slide 53

Copyright © Wyyzzk, Inc. 2004
Version 5.0

Project Architecture - 53

Break
Up to now, all we have done is identify
some components for the architecture
Now we refine the components

Slide 54

Copyright © Wyyzzk, Inc. 2004
Version 5.0

Project Architecture - 54

Responsibilities of Components
Once a system is divided into components,
each component needs responsibilities

Responsibilities come from the requirements
All use cases and requirements must be
implemented by some component of your
system

Now that the components are identified, we add interfaces to the components. This

moves us from Bredemeyer’s conceptual toward the logical architecture. Assigning

standard non-functional (usability, reliability, performance, security) or “shall”

requirements (the system shall do blah) is fairly easy because they are relatively small.

Assigning use cases to components is harder, because often the use case is bigger than

one component.

Slide 55

Copyright © Wyyzzk, Inc. 2004
Version 5.0

Project Architecture - 55

Use Case Realizations
A use case realization is a sequence
diagram for a use case
Create it by making a sequence diagram
using your components for objects
The messages are the sentences from the
use cases

Slide 56

Copyright © Wyyzzk, Inc. 2004
Version 5.0

Project Architecture - 56

Place Order Use Case
1. The customer logs into the system
2. The system displays a main screen
3. The customer selects to place an order
4. The system displays an order form
5. The customer enters his or her name and address
6. For each product the customer wishes to order

a. The customer enters a product code
b. The system gets the product description and price
c. The system adds the price to the total
d. The system displays the product description and price, and the order total on
the order form

End
7. The customer enters payment information
8. The customer submits the order to the system
9. The system verifies that the order is complete and correct
10. The system saves the order as pending
11. The system processes the payment
12. The system updates the order status to confirmed
13. The system displays a confirmation screen with the order id

Slide 57

Copyright © Wyyzzk, Inc. 2004
Version 5.0

Project Architecture - 57

Available Components

«subsystem»

Order Management

«subsystem»

Inventory

«subsystem»

Accounting

«subsystem»

Order Database

«subsystem»

System Access

Slide 58

Copyright © Wyyzzk, Inc. 2004
Version 5.0

Project Architecture - 58

Example Use Case Realization

Accounting
Order
Database

:Customer

Place an Order

Log Into System

Enter Name and Address

Order
Management

System
Access

Inventory

Display Main
Screen

Place an Order

Display Order
Form

Slide 59

Copyright © Wyyzzk, Inc. 2004
Version 5.0

Project Architecture - 59

Example Use Case Realization

Accounting
Order
Database

:Customer

description, price

GetProductInfo(Product Code)
Enter Product Code

Order
Management

System
Access

Inventory

Add price
to total

Display
product info
and total

loop [for each product]

Slide 60

Copyright © Wyyzzk, Inc. 2004
Version 5.0

Project Architecture - 60

Example Use Case Realization

Accounting
Order
Database

:Customer

Save (order, pending)

Submit Order

Enter Payment Information

Order
Management

System
Access

Inventory

Verify order

Display
confirmation

Process payment (order)

Update (order, confirmed)

Slide 61

Copyright © Wyyzzk, Inc. 2004
Version 5.0

Project Architecture - 61

Component Relationships

«subsystem»

Order Management

«subsystem»

Inventory

GetProductInfo (ProductCode) : description, price

The sequence diagram shows you the operations for each component and the

relationships between the components. If there is a message passed between two

components, then you will have a dependency relationship between those components.

The arrow on the dependency relationship points the same direction as the message.

Notice that the dashed arrow on the sequence diagram shows the return of data. This is

indicated in the text of the message shown above, where the returned data comes after the

colon.

Slide 62

Copyright © Wyyzzk, Inc. 2004
Version 5.0

Project Architecture - 62

Interfaces

«subsystem»

Order Management

«subsystem»

Inventory

«interface»
IInventory

GetProductInfo (ProductCode) : description, price
Naming convention for
interfaces is I in front of
subsystem name

An alternate way of showing component responsibilities is to use interfaces. Here the

message is put in the interface rather than in the component itself. Most architects will

show component responsibilities using interfaces rather than putting the operations

directly in the component. Using interfaces allows you to plug in any component to the

interface.

The dashed line with the triangle head is called realizes or implements. This tells me that

the subsystem Inventory has to provide an implementation for all of the operations in the

IInventory interface. The other dashed line with the stick arrowhead is dependency or

uses. This tells me that the subsystem Order Management uses (makes calls to) the

operations in the IInventory interface.

Slide 63

Copyright © Wyyzzk, Inc. 2004
Version 5.0

Project Architecture - 63

The other views
Physical
Process
Development

Slide 64

Copyright © Wyyzzk, Inc. 2004
Version 5.0

Project Architecture - 64

Physical View
The physical view of an architecture shows the
configuration of hardware for the system

It also shows the connections between the hardware
and the allocation of processes to the hardware

Requirements such as throughput, performance,
and fault-tolerance are taken into account
Deployment diagrams are created to show the
different nodes (processors and devices) in the
system

Slide 65

Copyright © Wyyzzk, Inc. 2004
Version 5.0

Project Architecture - 65

node connection

name label

Notation For Deployment Diagrams
A node is a run-time physical object representing
computational resources
A connection indicates communication

the connection can be stereotyped with the
communication protocol

Nodes can be stereotyped as devices

Slide 66

Copyright © Wyyzzk, Inc. 2004
Version 5.0

Project Architecture - 66

Nodes and Connectors

PC

PC
PC

NT Server
«tcp/ip»

«tcp/ip» «tcp/ip»

Slide 67

Copyright © Wyyzzk, Inc. 2004
Version 5.0

Project Architecture - 67

Nodes as Devices

Boston:PC

SanFrancisco:PC
Dallas:PC

Ames:NT Server«v.32»

«tcp/ip»
«tcp/ip»

:Modem
«device»:Modem

«device»

Slide 68

Copyright © Wyyzzk, Inc. 2004
Version 5.0

Project Architecture - 68

Hardware Architecture Issues
When designing the hardware architecture,
various issues affecting the hardware must be
resolved, including:

Response time and system throughput
Communication bandwidth/capacity
Physical location of hardware required
Distributed processing needs
Processor overloading or balance in a distributed
system
Fault tolerance

Slide 69

Copyright © Wyyzzk, Inc. 2004
Version 5.0

Project Architecture - 69

Response time & System throughput
How quickly does each piece of hardware need
to respond?
How much information can a piece of hardware
process at a time?
Is it faster to have one big computer, or several
smaller?
How much work can really be done in parallel?

Slide 70

Copyright © Wyyzzk, Inc. 2004
Version 5.0

Project Architecture - 70

Communication Bandwidth/capacity
What about the communication path (network)?
How fast is it?
What is the capacity?
Can the network handle anticipated loads?
Does it matter if the system slows down because
of network load?
Do you have complete control over the network,
or is some of it controlled by public utilities
(phone lines)?

Slide 71

Copyright © Wyyzzk, Inc. 2004
Version 5.0

Project Architecture - 71

Physical location of hardware
Where will the machines be located?
Do they need a climate controlled room?
Who needs access to the hardware?
What hours of the day/night does the hardware
need to be accessible?
How easy is it to get to for maintenance?

Slide 72

Copyright © Wyyzzk, Inc. 2004
Version 5.0

Project Architecture - 72

Processor overloading or balance
What happens if a particular processor gets
overloaded?
Can some of the load be moved to other
machines in the system?
Do you need to balance processor loads at run
time?
Does it matter if the processors have balanced
loads?

Slide 73

Copyright © Wyyzzk, Inc. 2004
Version 5.0

Project Architecture - 73

Fault tolerance
Does the system need to recover from failure?
To what degree?
Does the system have to handle everything
except catastrophic failure, or will a lesser degree
be sufficient?
Do you need “hot backup” systems to go online if
one of the primary processors fails?

Slide 74

Copyright © Wyyzzk, Inc. 2004
Version 5.0

Project Architecture - 74

Security
How will you prevent unauthorized access to
information being transmitted between
machines?
How will you prevent unauthorized access to the
physical hardware?

Slide 75

Copyright © Wyyzzk, Inc. 2004
Version 5.0

Project Architecture - 75

Fail Safe
Is the system allowed to crash?
If not, what will you do to prevent the system from
crashing?
Are there mechanisms in place, such as
redundant systems, or transaction monitoring, to
allow other parts of the system to pick up the load
if some parts fail?

Slide 76

Copyright © Wyyzzk, Inc. 2004
Version 5.0

Project Architecture - 76

Heterogeneous environments
Do you have hardware of different types?

NT and UNIX for example
Do these different systems have to
communicate?
How will you get them to communicate?

Slide 77

Copyright © Wyyzzk, Inc. 2004
Version 5.0

Project Architecture - 77

Hardware Architecture Issues
Solutions to hardware architecture issues
may become manual processes
Others will require the creation of new
classes or subsystems
You may need to go back and update other
views based on decisions made at this time

Slide 78

Copyright © Wyyzzk, Inc. 2004
Version 5.0

Project Architecture - 78

Process View of the Architecture
Most applications today are constructed of
multiple threads of control running concurrently

This could be multiple jobs on one machine or
distributed across several machines

We need a way to document the use of multiple
threads of control, to indicate which parts of the
static architecture go into which threads of
control, and to resolve the issues associated with
synchronizing the threads of control

Slide 79

Copyright © Wyyzzk, Inc. 2004
Version 5.0

Project Architecture - 79

What is a Thread of Control?
A thread of control is a generic term for
something that executes independently

A thread of control could be implemented as a:
• Process
• Thread
• Job
• Task
• Application

We are most concerned with processes and
threads

Slide 80

Copyright © Wyyzzk, Inc. 2004
Version 5.0

Project Architecture - 80

Process
Heavyweight flow of control
Processes are stand-alone
May be divided into individual threads

Slide 81

Copyright © Wyyzzk, Inc. 2004
Version 5.0

Project Architecture - 81

Thread
Lightweight flow of control
Threads run in the context of an enclosing
process

Slide 82

Copyright © Wyyzzk, Inc. 2004
Version 5.0

Project Architecture - 82

Why Multiple Threads of Control?
We use processes and threads to describe
the concurrency requirements of a system
Some reasons we use multiple processes
and threads are:

The system is distributed
The system is event-driven
Some key algorithms are computationally
intensive
We want to take advantage of the availability of
parallel processing supported by the environment

Concurrency requirements define the extent to which parallel execution of tasks is

required for the system. These requirements help shape the architecture.

A system whose behavior must be distributed across processors or nodes virtually

requires a multi-process architecture. A system which uses some sort of Database

Management System or Transaction Manager also must consider the processes which

those major subsystems introduce.

If dedicated processors are available to handle events, a multi-process architecture is

probably best. On the other hand, to ensure events are handled, a uni-process architecture

may be needed to circumvent the ‘fairness’ resource sharing algorithm of the operating

system: it may be necessary for the application to monopolize resources by creating a

single large process, using threads to control execution within the process.

In order to provide good response times, it may be necessary to place computationally

intensive activities in a process or thread of their own so that the system is still able to

respond to user inputs while computation takes place, albeit with fewer resources. If the

operating system or environment does not support threads (lightweight processes) there is

little point in considering their impact on the system architecture.

The above are mutually exclusive and may conflict with one another. Ranking

requirements in terms of importance will help resolve the conflict.

Slide 83

Copyright © Wyyzzk, Inc. 2004
Version 5.0

Project Architecture - 83

Why Multiple Threads of Control?
Concurrency requirements are found in the non-
functional requirements of the system, or through
careful reading of the use cases
The concurrency requirements should be ranked
in terms of importance to resolve conflicts

Sometimes the solution for one requirement makes
another requirement difficult or impossible to be
implemented
For example space vs. time trade-offs

Slide 84

Copyright © Wyyzzk, Inc. 2004
Version 5.0

Project Architecture - 84

Why Multiple Threads of Control?
The following kinds of requirements indicate
that we need multiple threads of control:

The system is required to be distributed
Multiple users must be able to perform their work
concurrently
While the system is processing a request from one
user, the results of that request are required by
another user performing a different task
Prototypes have found that performance needs
cannot be met with a monolithic application

The above concurrency requirements were documented in the Course Registration

System Supplemental Specification (see the Course Registration Requirements

Document).

The first requirement is typical of any system, but the multi-tier aspects of our planned

architecture will require some extra thought for this.

The second requirement demonstrates the need for a shared, independent process

managing access to the course offerings.

The third issue will lead us to use some sort of mid-tier caching or preemptive retrieval

strategy.

Slide 85

Copyright © Wyyzzk, Inc. 2004
Version 5.0

Project Architecture - 85

Why Multiple Threads of Control?
We want to utilize multiple CPUs and/or nodes
We want to increase CPU utilization
We must provide fast reaction to external stimuli
We need to service time-related events
We would like to be able to prioritize activities
We would like to support load sharing between
machines
We can separate the concerns between software
areas
We can improve system availability
We want to support major subsystems

For each separate flow of control needed by the system, create a process or a thread

(lightweight process). A thread should be used in cases where there is a need for nested

flow of control (i.e. within a process, there is a need for independent flow of control at

the sub-task level).

For example, we can say (not necessarily in order of importance) that separate threads of

control may be needed to:

Use of multiple CPUs. There may be multiple CPUs in a node or multiple nodes in a

distributed system

Increased CPU utilization. Processes can be used to increase CPU utilization by

allocating cycles to other activities when a thread of control is suspended

Fast reaction to external stimuli

Service time-related events. Examples: timeouts, scheduled activities, periodic activities

Prioritize activities. Separate processes allows functionality in different processes to be

prioritized individually

Scalability. Load sharing across several processes and processors

Separation of concerns. Separating concerns between different areas of the software, e.g.,

safety

Availability. Redundant processes. You can achieve a higher system availability by

having backup processes

Support major subsystems. Some major subsystems may required separate processes

(e.g., the DBMS, Transaction Manager, etc.)

Slide 86

Copyright © Wyyzzk, Inc. 2004
Version 5.0

Project Architecture - 86

Common Reasons for
Multiple Threads of Control

Some of the more common reasons for creating
multiple threads of control are:

architecture
availability
performance

Slide 87

Copyright © Wyyzzk, Inc. 2004
Version 5.0

Project Architecture - 87

Architecture
You may have chosen a logical architecture that
requires multiple threads of control

Such as client/server
You may have a distributed physical architecture

Each machine will require at least one process
Because of the dependencies between the parts
of the architecture, the process architecture is
usually designed along with the logical and
physical architectures

Slide 88

Copyright © Wyyzzk, Inc. 2004
Version 5.0

Project Architecture - 88

Availability
Consider the availability of cpu’s and other
processes this system depends on.
For the following issues, decide if they are
important to your system.
If so, you need to design a solution.

Slide 89

Copyright © Wyyzzk, Inc. 2004
Version 5.0

Project Architecture - 89

Availability
What if a cpu that is executing a process in your system
becomes unavailable?

Do you need to be able to move the process at runtime?
What if a process in your system stops responding?

Do you need a way to interrupt it, or restart it, or go to a backup
copy of the process?

What if your system needs to communicate with a
process on another machine?

Should the processes be aware that they are running on separate
machines?
What distributed processing techniques will you use?
What if the network goes down?

Slide 90

Copyright © Wyyzzk, Inc. 2004
Version 5.0

Project Architecture - 90

Performance
Is performance an issue in your system?
You may be able to increase performance by having
multiple machines or CPU’s running various parts of the
application in parallel

The Silicon Graphics graphics engine runs on a separate CPU
from the rest of the machine. It has been tuned specifically to
perform quick matrix based calculations for graphics.
SETI at home is supported by UC Berkeley. They needed a lot of
processing power, but couldn’t afford a supercomputer. The
solution was to distribute small amounts of work to millions of
machines working in parallel.

Slide 91

Copyright © Wyyzzk, Inc. 2004
Version 5.0

Project Architecture - 91

Performance
On the other hand, if you split the system into
multiple processes, you introduce overhead in the
form of inter-process communication (IPC)

if the communication is over a network, you have even
more overhead

The more processes you have, the larger the
potential overhead

Slide 92

Copyright © Wyyzzk, Inc. 2004
Version 5.0

Project Architecture - 92

New Problems
Deciding to create multiple threads of
control for your system solves some
problems, but introduces others
Three primary things to think of are:

System management
Synchronization
Process/Thread creation and destruction

Slide 93

Copyright © Wyyzzk, Inc. 2004
Version 5.0

Project Architecture - 93

System Management
If the processes are running on multiple
machines, how do you handle maintenance on
the systems?

How do you prevent inconsistencies between versions
of processes when upgrading systems?
How do you handle scheduled reboots of some of the
machines running your system?

Slide 94

Copyright © Wyyzzk, Inc. 2004
Version 5.0

Project Architecture - 94

Synchronization
Do you need to synchronize the behavior of
multiple threads of control?

How will you accomplish that synchronization?
• Especially if the synchronization is across multiple

machines
What IPC strategy will you use?

Slide 95

Copyright © Wyyzzk, Inc. 2004
Version 5.0

Project Architecture - 95

Thread of Control
Creation and Destruction

In a single process, single threaded system
we don’t have to worry about process or
thread creation and destruction
Once you design multiple threads of control
you also have to decide when and how
processes and threads will be created, and
when and how they will be destroyed when
no longer needed

Each process or thread of control must be created and destroyed. In a single-process

architecture, process creation occurs when the application is started and process

destruction occurs when the application ends. In multi-process architectures, new

processes (or threads) are typically spawned or forked from the initial process created by

the operating system when the application is started. These processes must be explicitly

destroyed as well.

The sequence of events leading up to process creation and destruction must be

determined and documented, as well as the mechanism for creation and deletion.

Slide 96

Copyright © Wyyzzk, Inc. 2004
Version 5.0

Project Architecture - 96

Create Processes and Threads
Now that you have identified the need for multiple threads
of control, choose which will be processes, which threads,
and document your decisions.
For each separate thread of control needed by the system,
create a process or a thread (lightweight process).

A thread should be used in cases where there is a need for
nested flow of control (i.e. within a process, there is a need for
independent flow of control at the sub-task level)

You will have to consider your run-time platform when
creating processes and threads

Does your platform support multiple processes and multiple
threads?
Is there a limit on how many processes and threads you can
create?

Slide 97

Copyright © Wyyzzk, Inc. 2004
Version 5.0

Project Architecture - 97

Documenting Processes in UML
Processes are represented by UML components
We will create processes in a component
diagram

«process»

MyProcess

Slide 98

Copyright © Wyyzzk, Inc. 2004
Version 5.0

Project Architecture - 98

Modeling Threads in UML
Threads are shown by nesting them inside processes
Threads can also have interfaces

«process»

Drawing Tool

«process»

Graphics Engine

«process»

Simulator

«thread»

System

«thread»

User

Slide 99

Copyright © Wyyzzk, Inc. 2004
Version 5.0

Project Architecture - 99

Process View vs Logical View
Not only do you have to design the process
view, but you have to decide how the
logical view fits into the process view

Where do the subsystems fit inside the
processes and threads?

Slide 100

Copyright © Wyyzzk, Inc. 2004
Version 5.0

Project Architecture - 100

Subsystems and Processes
You might decide to make one process for
each subsystem and a thread for each
nested subsystem
You could put multiple subsystems into one
process
You could divide a subsystem between
processes

In this case you want to go back to the
subsystem and create nested subsystems for
the parts that are being split

Slide 101

Copyright © Wyyzzk, Inc. 2004
Version 5.0

Project Architecture - 101

Classes and Processes
Classes provide the definitions for objects
When a process creates an object, it uses a class

That class must be part of the process
If the object is used by more than one process, then
the class is also part of more than one process

• For example, if you pass objects between processes, each
process must include the corresponding class for the object

This is different from the logical view where classes
belong to just one subsystem

When you pass data between processes, you put the data into an object which is defined

by a class. That class is included in both processes, because it describes to the processes

the data that they are sharing.

Slide 102

Copyright © Wyyzzk, Inc. 2004
Version 5.0

Project Architecture - 102

Classes in Processes

The class SimData resides in Graphics Engine and Simulator. Both
components need the class in order to share data.

«process»

Drawing Tool

«process»

Simulator

SimData

«process»

Graphics Engine

SimData

Slide 103

Copyright © Wyyzzk, Inc. 2004
Version 5.0

Project Architecture - 103

Design Elements to Processes
Group elements that closely cooperate, and
must execute in the same thread of control
Separate elements which do not interact
Repeat until the minimum number of
processes is reached that still provide the
required distribution and effective resource
utilization

Classes and subsystems may be allocated to one or more processes and threads.

Inside-out

Group classes and subsystems together in sets of cooperating elements that (a) closely

cooperate with one another and (b) need to execute in the same thread of control.

Consider the impact of introducing inter-process communication into the middle of a

message sequence before separating elements into separate threads of control.

Conversely, separate classes and subsystems which do not interact at all, placing them in

separate threads of control.

This clustering proceeds until the number of processes has been reduced to the smallest

number that still allows distribution and use of the physical resources.

Outside-in

Identify external stimuli to which the system must respond. Define a separate thread of

control to handle each stimuli and a separate server thread of control to provide each

service.

Consider the data integrity and serialization constraints to reduce this initial set of threads

of control to the number that can be supported by the execution environment.

Slide 104

Copyright © Wyyzzk, Inc. 2004
Version 5.0

Project Architecture - 104

Relationships between Processes
Use the dependency arrow to show which
processes communicate

«process»

Drawing Tool

«process»

Graphics Engine

«process»

Simulator

If your subsystems have a relationship, then the processes that contain those subsystems

also have a relationship.

Slide 105

Copyright © Wyyzzk, Inc. 2004
Version 5.0

Project Architecture - 105

Defining Process Interfaces
Use interfaces to show the operations in
the process interface

«process»

Drawing Tool

«process»

Graphics Engine

«process»

Simulator

«interface»

GraphixInt
RotateSelection (degrees)

AddSpinToSelection (Speed)

«uses»

«implements»

The operations from a subsystem become the operations of the process that contains the

subsystem.

Slide 106

Copyright © Wyyzzk, Inc. 2004
Version 5.0

Project Architecture - 106

Process Interfaces
If the diagram gets cluttered, use the
simplified form of an interface, which does
not show the operations in the interface

«process»

Graphics Engine
«process»

Drawing Tool
GraphixInt

Slide 107

Copyright © Wyyzzk, Inc. 2004
Version 5.0

Project Architecture - 107

Process Interfaces (cont.)
The interface can be any published interface for
your process

COM object interface
CORBA object interface
API
Protocol

Slide 108

Copyright © Wyyzzk, Inc. 2004
Version 5.0

Project Architecture - 108

Showing Processes on Nodes
You can add processes to the deployment
view to show which processes run on which
processors
This is also a way to see where you need
to communicate over a network

Slide 109

Copyright © Wyyzzk, Inc. 2004
Version 5.0

Project Architecture - 109

Showing Processes on Nodes

Ames:NT Server

«executable»

Reservations

Dallas:PC

«executable»

Planner

Slide 110

Copyright © Wyyzzk, Inc. 2004
Version 5.0

Project Architecture - 110

Development View
As defined by Phillipe Krutchen, this view is
seldom used in practice.

Most of the information in this view is better
documented in architectural guidelines and
standards, or in the project team’s
documentation of their workspaces

Slide 111

Copyright © Wyyzzk, Inc. 2004
Version 5.0

Project Architecture - 111

Use Case View
Architecturally significant use cases

Important to the business – a primary
functionality of the company
Describe a flow through most or all of the
major architectural components
Cause the selection of one architectural
pattern over another
Cause the addition of significant components
to the architecture

Use cases that are architecturally significant are described in the use case view. These are

use cases that lead you to selecting one architecture over another.

 Important to the business – process orders for an online business

 Describe a flow through most of the components – involve the use of user

interfaces, business logic, and persistent data

 Select an architectural pattern – use cases that describe batch processes would

cause you to select a different architecture than use cases that describe human

interactions with the system

 Cause the addition of significant components – login, user tracking, logging can

cause you to add a whole security component to your architecture.

Slide 112

Copyright © Wyyzzk, Inc. 2004
Version 5.0

Project Architecture - 112

Other Information
Data Model
Analysis Model
Policies
Mechanisms

Slide 113

Copyright © Wyyzzk, Inc. 2004
Version 5.0

Project Architecture - 113

Data Model
At the architecture level, this shows the
shared persistent data
Typically expressed in Entity-Relationship
(ER) diagrams
May be described with UML Class
diagrams

Slide 114

Copyright © Wyyzzk, Inc. 2004
Version 5.0

Project Architecture - 114

Analysis Model
At the architecture level, this shows the
shared run-time data
Typically described with UML Class
diagrams

Slide 115

Copyright © Wyyzzk, Inc. 2004
Version 5.0

Project Architecture - 115

Policies
Described in a text document
Can be rules to follow or guidelines

Slide 116

Copyright © Wyyzzk, Inc. 2004
Version 5.0

Project Architecture - 116

Mechanisms
Describe a standard way of doing
something

Error handling
Interacting with a database
Communicating over a network

Described as a pattern
Class Diagram
Sequence Diagram (optional)

Slide 117

Copyright © Wyyzzk, Inc. 2004
Version 5.0

Project Architecture - 117

Multiple layers of Architecture
A subsystem of an architecture could become
very large or complicated.
Under these conditions, it is necessary to design
an architecture for that subsystem
The architecture of the subsystem can be
different from the architecture of the whole
system

The system might be a 3 tier architecture, but the
presentation tier might be designed as a MVC
architecture.

Slide 118

Copyright © Wyyzzk, Inc. 2004
Version 5.0

Project Architecture - 118

Example: Decomposing a Layered
Architecture

Application Package

Computer Hardware

Operating System

Services

Slide 119

Copyright © Wyyzzk, Inc. 2004
Version 5.0

Project Architecture - 119

Example: Decomposing a Layered
Architecture (cont.)

Note that the services layer
has been divided into three
separate Subsystems.

Application Package

Computer Hardware

Operating System

Services

User Dialog
Control

Simulation
Package

Windowing
System

Slide 120

Copyright © Wyyzzk, Inc. 2004
Version 5.0

Project Architecture - 120

Decomposing a Layered Architecture
(cont.)

The Windowing
System subsystem in
turn has been
decomposed into
layers

Application Package

Computer Hardware

Operating System

Services

User Dialog
Control

Simulation
Package

Windowing
System

Window
Graphics

Screen
Graphics

Pixel
Graphics

Slide 121

Copyright © Wyyzzk, Inc. 2004
Version 5.0

Project Architecture - 121

Summary
1. Identify components, bottom-up and/or top-
down
2. Realize the architecturally significant use
cases using components on sequence diagrams
3. Add relationships and operations to
components
4. Create the physical architecture
5. Convert the subsystems into processes and
threads on the hardware
6. Add data model, analysis model, policies, and
mechanisms as appropriate
7. Document the architecture (another lesson)

