
Class Notes set 12 Page

Copyright Jim Roberts October, 2012 Pittsburgh, PA 15221 All Rights Reserved

1

Part I: Arrays Basics #2:
This discussion is related to class code set12A. You should have that code open
as you read through this.

The first line of the program:
 int [] numbers = { 3, 5, 8, 1, 3, -2, 4, 11, 7, 6 };
declares and initializes the array. Building arrays like this must be done globally
in one statement or it will not compile.
This line of code builds an array with a length of 10. The field, numbers.length
stores the value 10 which is the number of elements in the array or the size of
the array.

The pattern we follow for much of the array work involves using a for loop to get
to each value stored in the array. This is called traversing the array. Unless
specified otherwise, we often begin with the element [0] and move to element
[length-1]. However, this is a pattern and some requirements (as seen in the
fourth example below) require starting and/or stopping at other elements of the
array.

The first example in the code prints the array on a single line. Here is the
function:
void printArray()
{
 println("Values in the array:");
 for (int i = 0 ; i < numbers.length ; i++)
 {
 print(numbers[i] + " ");
 }
 println();
}

Class Notes set 12 Page

Copyright Jim Roberts October, 2012 Pittsburgh, PA 15221 All Rights Reserved

2

Let’s trace the execution of the for loop:
 for (int i = 0 ; i < numbers.length ; i++)

Value
of i

Evaluation of test:
i < numbers.length

(length’s value is 10)

Array

element
being visited

Value of
array

element
being
visited

What the
visit does
with the
value

0 true [0] 3 Print it
1 true [1] 5 Print it
2 true [2] 8 Print it
3 true [3] 1 Print it
4 true [4] 3 Print it
5 true [5] -2 Print it
6 true [6] 4 Print it
7 true [7] 11 Print it
8 true [8] 7 Print it
9 true [9] 6 Print it
10 false

This rather verbose way of tracing the execution of the for loop shows how
Processing uses the for loop variable, i to access or “visit” each element of the
array. The word visit means that we do something with the value stored in the
array. The “something” we do is specified in the problem we are solving. The
specification here was to print each element.

The second function in the code has the task of computing and returning the
average back to the draw() function where it was called so it could be printed.
float getAverage()
{
 float sum = 0;
 for (int i = 0 ; i < numbers.length ; i++)
 {
 sum = sum + numbers[i] ;
 }
 return sum/numbers.length;
}
This function is not a void function because it must return the average to draw()
for printing. The reason the function returns a float is because a fractional
answer is often a better representation of an average. The average of the values

Class Notes set 12 Page

Copyright Jim Roberts October, 2012 Pittsburgh, PA 15221 All Rights Reserved

3

1 and 2 is best represented by the value 1.5. If we use int values to do this we
get a different result:
 2 / 1 1
Remember the rules of integer division – the result must be iint.
Here is a similar tracing of the for loop:
for (int i = 0 ; i < numbers.length ; i++)

Value
of i

Evaluation
of test:

i <
numbers.
length

Array

element
being
visited

Value of
array

element
being
visited

What the
visit does

with the value

Value
of local
variable

sum

 0.0
0 true [0] 3 Add it to sum 3.0
1 true [1] 5 Add it to sum 8.0
2 true [2] 8 Add it to sum 16.0
3 true [3] 1 Add it to sum 17.0
4 true [4] 3 Add it to sum 20.0
5 true [5] -2 Add it to sum 18.2
6 true [6] 4 Add it to sum 22.0
7 true [7] 11 Add it to sum 33.0
8 true [8] 7 Add it to sum 40.0
9 true [9] 6 Add it to sum 46.0
10 false

Class Notes set 12 Page

Copyright Jim Roberts October, 2012 Pittsburgh, PA 15221 All Rights Reserved

4

The third example prints values in the array that are greater than the average:
void printValuesGreaterThanAverage(float average)
{
 println("Values greater than the average of " + average + ": ");
 for (int i = 0 ; i < numbers.length ; i++)
 {
 if (numbers[i] > average)
 {
 print(numbers[i] + " ");
 }
 }
 println();
}
Here is a another trace of the for loop:
for (int i = 0 ; i < numbers.length ; i++)

Value
of i

Evaluation
of test:

i <
numbers.
length

Array

element
being
visited

Value of
array

element
being
visited

Evaluation of
test:

numbers[i] >
average

The average
is 4.6

What
this
visit
does
with
value

0 true [0] 3 false nothing
1 true [1] 5 true print it
2 true [2] 8 true print it
3 true [3] 1 false nothing
4 true [4] 3 false nothing
5 true [5] -2 false nothing
6 true [6] 4 false nothing
7 true [7] 11 true print it
8 true [8] 7 true print it
9 true [9] 6 true print it
10 false

Class Notes set 12 Page

Copyright Jim Roberts October, 2012 Pittsburgh, PA 15221 All Rights Reserved

5

The fourth example uses a different pattern in the for loop. The for loop
must begin at element [1] and stop at element [numbers.length-1]. The
reason is the task specified in the name of the function:
 printValuesGreaterThanBothNeighbors()
To understand the task we have to define the term neighbor. For this task
a neighbor is the element that is either immediately before and after an
array element. For element [3], the neighbors are elements [2] and [4].
Note that not all elements have two neighbors. Element [0] and element
[length-1] have only one neighbor(elements [1] and [length-2] respectively).
This function must print only those elements that have values greater than
both neighbors. Given the above, lets think about this… In order to
“qualify” for printing, an element must have two neighbors. Elements [0]
and [numbers.length] do not have two neighbors. If our code tries to visit
the element before element [0] or after element [numbers.length], the
program will crash. So we have to alter the pattern of the for loop. Here is
the function definition:
void printValuesGreaterThanBothNeighbors()
 {
 println("Values greater than both neighbors: ");
 for (int i = 1 ; i < numbers.length-1 ; i++)
 {
 if (numbers[i] > numbers[i-1] &&
 numbers[i] > numbers[i+1])
 {
 print(numbers[i] + " ");
 }
 }
 println();
 }

Class Notes set 12 Page

Copyright Jim Roberts October, 2012 Pittsburgh, PA 15221 All Rights Reserved

6

For practice, we will let you trace the execution of the for loop in this code:

Here is the array again so you do not have to flip back and forth:
 int [] numbers = { 3, 5, 8, 1, 3, -2, 4, 11, 7, 6 };

for (int i = 1 ; i < numbers.length-1 ; i++)

Value
of i

Evaluation
of test:

i <
numbers.
length

Array

element
being
visited

Value of
array

element
being
visited

Evaluation of
test:

numbers[i] >
numbers[i-1]

&&
numbers[i] >
numbers[i+1]

What
this
visit
does
with
value

Class Notes set 12 Page

Copyright Jim Roberts October, 2012 Pittsburgh, PA 15221 All Rights Reserved

7

Part II Arrays as arguments and return types:
This discussion is related to class code Set12B. You should have that code
open as you read through this.

This set of notes focuses on using arrays as arguments and as return
types. The last part is code for a type of search called a filter.

You should read over the board notes bn14PartA and revisit the first part of
these notes if you are still foggy on how to declare and initialize an array
and how to use a for loop to traverse the array and what we can do when
we visit each element of the array. These notes assume you know what
those terms mean.

We begin with two arrays of char:
char [] answers1 = { 'a', 'c', 'd', 'e', 'b', 'b', 'a', 'c', 'd', 'a' };
char [] answers2 = { 'c', 'c', 'e', 'b', 'a', 'b', 'd' };

Here is how we would draw Processing’s view of these arrays:

The first two function calls print each array:
 printArray(answers1);
 printArray(answers2);

Processing does not make copies of the data for the arguments in the
definition as it would for primitive variables. What Processing does is
make copies the arrow that connects the reference to the array. This
sounds very confusing so let’s make another drawing.

Here is how the program looks for this function call:
printArray(answers1);

Class Notes set 12 Page

Copyright Jim Roberts October, 2012 Pittsburgh, PA 15221 All Rights Reserved

8

When printArray is called with answers1 as the argument, the argument
answers in the definition is assigned to reference the same array that
answers1 references. Using this diagram, when the function printArray ()
needs to know what the length of the array is, it “follows” the reference
arrow to the array and looks up the length – which is 10. When the function
is visiting an element and needs to know the value of an element, it does
the same thing.

Class Notes set 12 Page

Copyright Jim Roberts October, 2012 Pittsburgh, PA 15221 All Rights Reserved

9

A similar picture forms for the second function call:
Here is how the program looks for this function call:
printArray(answers2);

For the second call where the argument is answers2, Processing assigns
the argument, answers in the definition to reference the same array as
answers2. When it needs to know the length of the array, it follows the
arrow to the array and finds the length of this array to be 7.

Some differences between arrays and primitive variables:

- Arrays can have multiple values – primitive variables can have only
one value.

- Arrays can have multiple references to them – primitive variables can
have only one name.

If you are not sure what the for loop is doing or how it is working in this
code, you must refer back to the previous set of class code or refer to
Shiffman. The execution of the for loop with the array is explained and
traced in detail.

Do not go on with this set of notes if you do not understand how the loop
and the array work together. You will be wasting your time.

Next we have this line of code:
 char [] answersAll = concat(answers1, answers2);

Class Notes set 12 Page

Copyright Jim Roberts October, 2012 Pittsburgh, PA 15221 All Rights Reserved

10

The left side of the assignment operator is building a new array reference.
There is no array – just a reference. The actual array is built and returned
by the function concat(). The concat() function is part of the Processing
API. The concat() function builds a new array that contains the elements
of the two arrays in the argument list. The two arrays in the arguments list
(answers1, answers2) are not modified or destroyed. Their values are
copied into the elements of the new array. A reference to this new array is
returned to the right side of the assignment operator where it is assigned
to the array reference, answersAll.

There are a number of functions in the Processing API that return
references to new arrays. Some of these might be useful to you in the last
half of the semester. You should explore these to see what they do and
how they work.

The next line of code is :
 char [] answersOdd = buildAnswersOdd(answersAll);
Here again, the left side of the assignment operator builds a new array and
returns a reference to it to be assigned to answersOdd. Unlike the
previous line, there is no definition of buildAnswersOdd()in the Processing
API. We have to define it.

Here is the definition of buildAnswersOdd()

char [] buildAnswersOdd(char [] answers)
{
 char [] temp = { };
 for(int i = 1 ;i < answers.length ; i = i + 2)
 {
 {
 temp = append(temp, answers[i]);
 }
 }
 return temp;
}:
Here is a look at the parts of this definition:
char [] This is the return type. OK – why is this function returning an array
of char. The answer is not a guess or the result of some form of mystical
reasoning. The answer is in the line of code where the function is called:
char [] answersOdd = buildAnswersOdd(answersAll);

Read this from right to left. It reads as:

Class Notes set 12 Page

Copyright Jim Roberts October, 2012 Pittsburgh, PA 15221 All Rights Reserved

11

 “buildAnswersOdd()will return something to be assigned to
answersOdd.”
The next question is to ask is, “what is answersOdd?”
We continue to read from right to left:
char [] answersOdd
This reads as, “answersOdd is an array of char.”

This tells us that the array buildAnswersOdd()must return an array of char.

 char [] temp = { };

If we are going to return an array of char, we must first build one. The
reference temp is a local variable. Processing does not initialize local
variables so we have to. This line of code initializes the array reference
temp to an array of char that is empty. Its length at this point in the
execution is zero.

 for(int i = 1 ;i < answers.length ; i = i + 2)
The function must build a new array containing the elements of the odd
indexes in the array referenced by the argument. We can do this in
different ways. Two were done in class. In this example the loop starts at
element [1] instead of element [0]. It traverses and visits every other
element or the odd elements. Thi happens because of the way the loop
increments the variable i. Instead of i++ which is the “usual” pattern, i is
incremented by 2 with this code: i = i + 2

temp = append(temp, answers[i]); The append() function is in the
Processing API. append() returns a reference to a new array that contains
all of the elements in the array temp plus one new element at the end which
has the value of the element in answers[i]. (Read this over several times).
The reference to the new array is assigned to temp. temp‘s old reference to
the old array is lost forever. Since there are no references to the old array,
it too, is lost forever.

The next page shows the structure of the arrays when the value of the loop
variable is 8 BUT before the reference is returned:

Class Notes set 12 Page

Copyright Jim Roberts October, 2012 Pittsburgh, PA 15221 All Rights Reserved

12

Remember, this is before the append() function returns the reference to the
new array:

The next page shows the structure of the arrays after the append()
function has returned the reference to the new array:

Class Notes set 12 Page

Copyright Jim Roberts October, 2012 Pittsburgh, PA 15221 All Rights Reserved

13

The array reference temp is no longer pointing to the 8 element array now
shown in red. It is pointing to the new array that contains all of the
elements in the old array plus one more – the value of element [8] in the
array referenced by answers. The old array now shown in red that temp
used to reference now has no references. We can no longer access any of
the values stored in it. It is lost to us forever.1

1 In the “old” days of programming, this was called a memory leak. If this occurred too
often, the program could crash because it ran out of available memory. Processing runs a

Class Notes set 12 Page

Copyright Jim Roberts October, 2012 Pittsburgh, PA 15221 All Rights Reserved

14

This is somewhat complex. It is explained here to show you that a
reasonable set of events do occur when we work with arrays. The more of
this you understand, the easier your work with arrays will be in the coming
weeks.

The last set of function calls:
 println("The number of a answers in answers1 is " + countLetter(answers1, 'a'));
 println("The number of b answers in answers2 is " + countLetter(answers2, 'b'));
 println("The number of c answers in answersOdd is " + countLetter(answersOdd, 'c'));

call a function that demonstrates one form of array search called a filter.
An array search occurs when we traverse an array looking for something
specific in the array. There are two general types of array searches:

1. We are looking for one specific value or the first occurrence of a
specific value in the array. It may or may not be there. If, and when
we find it, we can stop looking. This search is similar to you looking
for your keys or your id card in your room when you have misplaced
it. You stop looking when you find it

2. We are looking for all occurrences of a specific value in an array. We
must traverse the entire array and check every element. We cannot
stop when we find the first value. This is similar to your searching for
dirty laundry before heading down to the laundry room. You do not
stop when you find the first pair of dirty socks. You have to look
everywhere in your room.

The second search is often called a filter. We are filtering the array picking
out certain values.

The function countLetter()must traverse the array and count the number of
times a specific character is in the array. It is filtering the characters in the
array looking or a specific character.

Here is the code:
int countLetter(char [] answers, char letterToCount)
{
 int letterCount = 0;
 for(int i = 0 ; i < answers.length ; i++)
 {
 if (answers[i] == letterToCount)
 {
 letterCount++;

program called the garbage collector (yes, that is what it is called) that goes around
collecting up unreferenced arrays and returns the memory to the operating system so our
program will not run out of memory.

Class Notes set 12 Page

Copyright Jim Roberts October, 2012 Pittsburgh, PA 15221 All Rights Reserved

15

 }
 }
 return letterCount;
}
countLetter() must return a count of a specific character. Since it is
counting characters, the type of the count should be int. We should not
find half of an ‘x’.

int letterCount = 0; We declare a variable to store the count and
initialize it to zero.

for(int i = 0 ; i < answers.length ; i++) We use the for loop to
traverse the entire array since the character we are counting might be in
any element.

 if (answers[i] == letterToCount) We visit each element of the
array and “ask” if it is the letter we are counting. To ask the question, we
use the if control structure. If the [i]th element is equal to the letter we are
looking for, the expression evaluates to true.

letterCount++; If the expression is true, we increment the variable we
are using to store the count. If it is false, we do nothing.

return letterCount; Finally we return the count of the character we are
looking for back to the call where it is printed on the screen.

Final Thoughts on this part:
There is a lot here – a lot. Arrays are the basis of the second exam. You
need to work through this and the code of these same days. If you do not
understand any part of all of this, please come to office hours held by Jim
or the CAs and do this soon. Week 9 or 10 is too late.

Class Notes set 12 Page

Copyright Jim Roberts October, 2012 Pittsburgh, PA 15221 All Rights Reserved

16

Part III: Another Way to Build an Array
This discussion is related to class code set 12C. You should have that code
open as you read through this.

One nice thing about arrays and 15-102 is that we control the data. We have not
needed “outside” data. We have had the luxury of initializing the arrays in our
code.
 int [] numbers = { 1, 5, 4 };
We call this the initializer list which contains the values needed in our
program. Processing counts the number of values inside the braces and makes
the array exactly big enough to contain the data. It then copies the values of the
numbers in the list into the array with the beginning value being copied into
element [0], the next value into element [1], . . . This works for any type of
array.

Let’s change the playing field a bit. What if we want random values in the array?
We might do this?
int [] numbers = {int(random(10)), int(random(10)),int(random(10)) };
This works but if we want an array of 100 random numbers, the code would get
out of hand very quickly.

There is another way! We can “new” the array. That’s right, we are verbing a
perfectly good adjective… sigh… Before we continue, let’s look at the syntax:

• First we build the array reference – no array, just the reference:
 int [] numbers;
What we have is an “empty” reference. It is said to be null. We diagram it
like this:

• Next, we build the array for numbers to reference. For this discussion, we

want this array to have just three elements but it could have any
reasonable number of elements.
 numbers = new int [3];

Now our diagram looks like the traditional array diagram we have used
since the beginning of our work with arrays:

Since the array is a global variable, the elements are initialized to zero.

Class Notes set 12 Page

Copyright Jim Roberts October, 2012 Pittsburgh, PA 15221 All Rights Reserved

17

Here is the Processing program that does this:
int [] numbers;

void setup()
{
 size(300, 300);
 numbers = new int[3];
 initArray(numbers);
}

We have to write the code for the function initArray(). The definition of initArray(
) is below and it looks like code we have been writing for several weeks:

void initArray(int [] anyArray)
{
 for(int i = 0; i < anyArray.length; i++)
 {
 anyArray[i] = int(random(100));
 }
}

For a discussion of code very similar to the code in initArray() or for a review of
arrays from the beginning, you should refer back to the board notes and class
code for 1001.

The println() function actually prints the array and its contents with very nicely
formatted output. Below is a slightly modified version of the program above and
the output it generates:

void setup()
{
 size(300, 300);
 println("Printing array before we new it it:");
 println(numbers);
 numbers = new int[3];
 println("Printing array before we initialize it:");
 println(numbers);
 initArray(numbers);
 println("Printing array after we initialize it:");
 println(numbers);
}

Class Notes set 12 Page

Copyright Jim Roberts October, 2012 Pittsburgh, PA 15221 All Rights Reserved

18

void initArray(int [] anyArray)
{
 for(int i = 0; i < anyArray.length; i++)
 {
 anyArray[i] = int(random(100));
 }
}

Here is the output:

Class Notes set 12 Page

Copyright Jim Roberts October, 2012 Pittsburgh, PA 15221 All Rights Reserved

19

Here is code very similar to what we wrote in class:
final int MAX = 5; // This is a constant

int [] a;
int [] b;
color [] col;

void setup()
{
 size(300, 300);

 a = new int [MAX];
 b = new int [MAX];
 col = new color[MAX];

 initializeIntegerArray(a);
 initializeIntegerArray(b);
 initializeColorArray();

 drawBoxes();
}

void initializeIntegerArray(int [] anyArray)
{
 for(int i = 0; i < anyArray.length; i++)
 {
 anyArray[i] = int(random(width));
 }
}

void initializeColorArray()
{
 for(int i = 0; i < col.length; i++)
 {
 col[i] = color(int(random(255)),
 int(random(255)),
 int(random(255)));
 }
}

void drawBoxes()
{
 for(int i = 0; i < a.length; i++)
 {
 fill(col[i]);
 rect(a[i], b[i], random(width/5), random(height/5));
 }
}

Class Notes set 12 Page

Copyright Jim Roberts October, 2012 Pittsburgh, PA 15221 All Rights Reserved

20

Here is the output from one run of this code:

This code uses the “newing” discussed in the first pages of this part of notes.
Several things about some of the code: First, the three calls to initialize the
arrays;

 initializeIntegerArray(a);
 initializeIntegerArray(b);
 initializeColorArray();

Why do the calls to initializeIntegerArray() have an argument while the call to
initializeColorArray()does not? The answer is that there are two arrays of
integer in the program.

• We want to use a single function to initialize both of them. In order to do
this, we have to use the argument binding we have been talking about
since we wrote our first function definition (drawIntials(int, int, int, int)).
For a review of this and how it works with arrays, you should refer back to
the notes for 1006.

• There is only a single array of color so the function initializeColorArray()
can directly access the array. If there were two or more arrays of color,
we would have to use argument binding for this function.

Class Notes set 12 Page

Copyright Jim Roberts October, 2012 Pittsburgh, PA 15221 All Rights Reserved

21

One last idea is a concept of parallel arrays. The three arrays in this code are
said to be or described as “parallel arrays.” There in nothing in the syntax that
makes the “parallel.” They are parallel because of the way they are used. We
can see this in the code in this function:
void drawBoxes()
{
 for(int i = 0; i < a.length; i++)
 {
 fill(col[i]);
 rect(a[i], b[i], random(width/5), random(height/5));
 }
The arrays are parallel because the [i]th elements of all three arrays are used to
draw the [i]th box. Color col[0] is the color of the zeroth box. The zeroth box
uses a[0] for its x coordinate value and b[0] for its y coordinate value. It is this
relationship in the code that makes the arrays parallel.

If you look at the class code set 11 Demo 3, you will find the program of bouncing
squares that Jim used to introduce the idea of arrays. The code in the program
uses six parallel arrays. Five of the arrays contain int values and the sixth
contains the colors:
 int [] x, y, edge, dX, dY;
 color[] col;
The code in this program is very similar to the code used in these notes.

One last thing in this part: constants. . .
We mentioned this one time last week but it is worth repeating it. The line of
code in red on page 4 near the top is a constant. The “final” makes it a constant.
This is the syntax for declaring and initializing finals in Processing. When we use
this “newing” technique with arrays, we should set the size of the arrays with a
constant. Doing this allow us to alter the array size with a single edit. By
convention, constant names are all uppercase letters.

