257/757 Class Notes #25 File Reading Page 1

File Reading
Getting Data From Outside of the Program

What is a File?

Arrays marked the beginning of our programs requiring a lot of data - more data
that could be reasonable stored in primitive type global variables. For that work
with arrays, we used initializer lists or randomly generated values to initialize the
arrays. This is fine and serves us well but there are other ways to get data to store
in our arrays. One way is to “read data from text files.”

The term, “read data” means to transfer data from a file stored somewhere into an
array or arrays that in in our program. You read articles to transfer information
from the written page to your brain. The processes are parallel.

The term, “text files” refers to files that have only the printing characters for
information and only spaces, tabs, and new-lines?!

Another form of file is called a “binary file” which can be confusing because the
values of the text files are stored as their ASCII codes represented in binary. Binary
files are the files created by Word, Excel, and other software. These files contain
additional information to instruct the software on the fonts, sizes, colors, tab
location, cell size, ... needed to display the information in the file.

Jim took the paragraph above and copied it into a new Word .docX file and saved it.
He changed the name from Temp.docx to Temp.doc and opened it with a text editor
which displays only text information. When opened as a text file, the file was 972
lines long. Below are the first few lines:
PKREERAEQAcE-ARA[Content_Types].xml ¢AA(

T B¥IMO-@BU0& Afd)& a°pP<*alcelv

Hel,_filABI° (zi“NfI M /ufi' ©3h-i5)1&EAe6Sfi<0Oc|A"~d¢coBR 0 BdE, AE02rAz©
f1m¢2, BAR¥f:0T...# "~ lip'%oR0OgOtn[[¥&A q(=Xg moE!@A.E06N %o, |
_#WFeL8W()2AU< Bu-

<"8le.fie%§ AqMBANpOYKP | 1#*@’'3¢” ¢é&-ThbA

130Y9”‘wren@F6A]B+# />0 X BAE;E"©+Z(2e?»AaU =~/ f 709/

1 New-line, end-of-line, EOLN, return, enter: for our purposes, they mean the same
thing. In a text file a new-line is the way to mark the end of one line of data - a line
break. This is not the same line break that word processor insert when we are using
software like Word. In Processing, you can type as much code on a single line as
you wish (up to some reasonable limit where “reasonable” is defined by your
computer) without any new-lines being inserted. To move your typing o the next
line, you must press the [return] key on a Mac or the [enter]| key on Windows. Text
files are like Processing files because Processing files are really text files.

Copyright Jim Roberts Pittsburgh PA 15221 March 2014

257/757 Class Notes #25 File Reading Page 2

<@I?H <4Ae”....bGENA!-EN ~ €AmC«es+-Bfi_cb«2@$RT4A0EG00E 0
nO¥#AW00YRi0+H:B#0“EOgh{2EJuLGCEAX

[1-tfiDZXg BAFA k»E’BORE "~ APKARRA A «~"2RAflE

@_rels/.rels ¢@E(+@1;Ny 000H2C%0°6n N-“]B“niB040@ /$]<jfiticoy
JeQMb«fCEii0"0Ajow,ib<fi)o@%r/BIAAG"T-DbtE;OH;0E ™'A

w " QjmH" T]§teBR&ReO®A\£1|1601621,;0%0¢,0d, # B'HS ¢C[167 [}»?*G['fhéQj-
iAb&al=EQclaBBiilu:tBoA%oit€0A fc5=201...0

cefvL(E&OF-ETako$m380 U—»<§EN)ox"40/y BB X € 0° 1BicT«ZO-®"

Lé+< B EPKEARAERAhu- AnBRAEword/_rels/document.xml.rels ¢@R(+2IONy
0ENOH2EA;qRT TRE@IEC82(E: +al» A ~U"0TeaZ%AK2+0e|k¢Wi /e A&A; Aifi§iAIL" 0
, U-x9[Je$to0 - huldN;tuii# 0 T B@/0Z X ADAE8 # B€;AC a8[[@lG(Ac; X auBaea
y"MOABSh> “$5iSg)/)) § 6: @i “mOU|7°ON®
Am7
Qs
8” YautuF[[6@-2 0 ceGREER»G Y,f0 AV ¢, 0 1 fisB* t/YBfS

The moral of this little story is that binary files have a lot of information that we are
not supposed to see that is used to display the information that we are supposed to
see.

Text files are WYSIWYG - What You See Is What You Get. Many programmers refer
to text files as “human readable” and looking at the stuff above you, can see why this
description is appropriate.

Reading a Text File

Processing has a function that does the work of reading the file:
loadStrings (“name-of-the-text-file-to-read”);

If you want to see what this function does when it is called, look at the last section of
these notes. That information is not necessary to understand and use
loadStrings (). Itis there for the curious among you.

The simplest way to use loadStrings () is to put the text file in a folder named
data that is in the folder containing the .pde file - where you may have put your
image files, sound files and font files.

The argument of the function call loadStrings () must itself be a String that is
the name of the file. (If the file is located some place other than the data folder, you
can put the complete path to the file - putting the file in the data folder, if at all
possible, is much simpler.).

The function loadStrings () returns the information in the file as an array of
Strings where each String element of the array is one line of the text file.

Copyright Jim Roberts Pittsburgh PA 15221 March 2014

257/757 Class Notes #25 File Reading Page 3

If the text tile is empty (yes, there can be empty text files - suppose you have a game
that is keeping track of high scores in a text file. Before anyone plays your game,
would be no high scores), the array returned by loadStrings() will have a length
of zero.

If there is one line in the text file, the returned array of Strings will have one
element. If there are 42 lines in the text file the returned array will have 42
elements.

Each String (if there are any) will be one complete line of the text file.

Here is a text file named DataDemoO . txt:

how now brown cow

she sells sea shells by the sea shore

rubber baby buggy bumpers

four wrists wear four watches

peter piper picked a peck of pickled peppers

Here is the code that can read the file and store it in an array of Strings:
String [] dataStrings;
void setup()
{
size(400, 600);
dataStrings = loadStrings("DemoDataO.txt");
println(dataStrings) ;

}

The text () function cannot display an array without a loop to traverse the array
but the println() function can. Here is the output of the println():

[0] "how now brown cow"

[1] "she sells sea shells by the sea shore"
[2] "rubber baby buggy bumpers"
[
[

3] "four wrists wear four watches"
4] "peter piper picked a peck of pickled peppers"

As you can see, the array of Strings returned by loadStrings () and referenced
by dataStrings has five elements and each element is a String. The beginning
element of the array is the beginning line of text in the file. The last element of the
array is the last line of the file.

In our work with Processing thus far most of the data we use are numbers -
locations and sizes of figures and RGB color values. “How now brown cow” is not of
much use. This is where file reading gets interesting. Beyond saying use the
function loadStrings () toread the file, what we do with the returned array of
Strings can be an infinite set of possibilities.

Copyright Jim Roberts Pittsburgh PA 15221 March 2014

257/757 Class Notes #25 File Reading Page 4

We can show you some examples here and these examples along with Shiffmans’
chapter can only serve as a guide. You have to modify the code to read your files.

First, let’s suppose we have a file that has the kind of figure, location, size and RGB
values of figures. The file might look like this:

0 100 100 40 50 200 100 45
1 100 200 33 83 100 200 O
1 200 200 73 23 50 100 200
0 300 100 76 23 50 200 55

Some programmers call this a formatted file. That means that each line is the same
as every other line - not the same values but what the values represent. Every value
is an int value. This is important if we want to keep the file reading simple. It also
means that we need to know what the values represent.

Question - what does the leading 0 or 1 stand for? The answer in not obvious - it
comes from the dark recesses of Jim’s mind (brrr...). He is using the 0 to represent
arectangle and the 1 to represent an ellipse2. So here is what the data translates to:

Rect/elipse X Y Width Height Red Blue Green
0 100 100 40 50 200 100 45
1 100 200 33 83 100 100 0
1 200 200 73 23 50 100 200
0 300 100 76 23 50 200 55

Here is the code that reads the file:
String [] dataStrings;
void setup()

{

size(400, 600);
dataStrings = loadStrings("DemoDatal.txt");
println(dataStrings) ;

}

Look familiar—is should - the only change is the name of the file. Here is the output
of the println():

[0] "O 100 100 40 50 200 100 45"
[1] "1 100 200 33 83 100 200 O"
[2] "1 200 200 73 23 50 100 200"
[3] "O 300 100 76 23 50 200 55"

Now we have to convert this array of Strings into int values that we can use to draw
the figures. If you have not read Shiffman, you should - he does this much better
than Jim does.

Converting this data requires two steps.

2 How could he store data for a triangle?

Copyright Jim Roberts Pittsburgh PA 15221 March 2014

257/757 Class Notes #25 File Reading Page 5

1. Split each String into a new array that contains the separate Strings.
2. Convert these separate Strings into int values

Let’s look at #1 first. The code to split each String looks like this:

Copyright Jim Roberts Pittsburgh PA 15221 March 2014

257/757 Class Notes #25

File Reading Page 6

String [] dataStrings;
void setup()
{
size(400, 600);
dataStrings =
loadStrings("DemoDatal.txt");
for(int i = 0;
i < dataStrings.length;
i++)
{

String [] individualStrings =

split(dataStrings[i], ' '

println("Array element [" +
i+

"] :");

println(individualStrings);

}

);

The for loop traverses the array dataStrings

Each element of the array which is one entire
line of the file is split using the function

split () which returns an array containing the
individual substrings.

This is the magic that separates each

different substring in the array into separate

Strings. The signature ofs split()is:
split(String [], char)

where the char is the char that

separates each subsring.

This print the label for each arrah element.

This prints the array of substrings..

Here is the output from the println (

) foreach call of split() ;

Array element [0]:

[0] "O"

[1] "100"

[2] "100"

[3] "40"

[4] "50"

[5] "200"

[6] "100"

[7] "45"

Array element [1]:
[0] "1"

[1] "100"

[2] "200"

[3] "33"

[4] "83"

[5] "100"

[6] "200"

[7] "oO"

Array element [2]:
[0] "1"

[1] "200"

Copyright Jim Roberts Pittsburgh PA 15221

March 2014

257/757 Class Notes #25 File Reading Page 7

[2] "200"
[3] "73"
[4] "23"
[5] "50"
[6] "100"
[7] "200"
Array element [3]:
[0] "o
[1] "300"
[2] "100"
[3] "76"
[4] "23"
[5] "50"
[6] "200"
[7] "55"

Ok, that takes care of the first task andwe have an array of Strings but we cannot
use Strings as arguments for locating and sizing rects and ellipses and the RGB
values of colors. We have to convert these Strings to int values (or float values if we
need to use floats).

So on to task #2 - converting the Strings to ints...

Again, Processing does the dirty work for us with the function int () or, if we are
using floats, the function £loat().

We have used int () to convert float values to int values earlier in the course. It
turns out that the int () function has multiple signatures - something the new

version of the Processing API does not show you (Jim has sent mail to the Processing
folks...):

The signatures for the int () function appear by testing with code to be:

int(float)

int(String)

int(String [])
So the int() function can convert a single String to an int value and return it as long
as the String forms a valid integer AND it can convert an array of Strings into an
array of int values and return the array as long as all of the Strings being converted
can form valid integers.

The code to do this is below. Remember that we know what each value on each line
represents. We have to know this. If you have forgotten, go back to page 4. The
program how has seven parallel arrays to store the data - one array for each value
on a line fo the file.

Copyright Jim Roberts Pittsburgh PA 15221 March 2014

257/757 Class Notes #25

File Reading Page 8

String [] dataStrings;

int [] fig, xLoc, yLoc, wd, ht,
redVal, greenVal, blueVal;

void setup()

{
size(400, 600);
dataStrings =

loadStrings("DemoDatal.txt");

fig = new int

[dataStrings.

xLoc = new int int

[dataStrings.
yLoc = new int int

[dataStrings.
wd = new int int

[dataStrings.
ht = new int int

[dataStrings.
redval = new int int

[dataStrings.
greenVal = new int int

[dataStrings.
bluevVal = new int int

[dataStrings
for(int i = 0;

i < dataStrings.length;

it++)
{

String [] individualStrings
split(dataStrings[i],

int [] intData =

int(individualStrings);

fig[i] = intData|
intData[
intData[
intData[
intData[
intData[
intData[
intData[

xLoc[1]
yLoc[i]

wd[i]

ht[i]
redval[i]
greenvVal[i]
blueval[i]

Ne Ne N

. N

~.

~.

SJo ok WNEHO
et et et e e e

~.

Declares the seven parallel arrays

Read the file - when this is done,
the length of dataStrings tells us
the length required for each
parallel array which we use when we
new the seven parallel arrays.

Here the seven parallel arrays are
new’ed using the length of the
dataStrings array.

When this is finished we have the
seven arrays of in that we need to
store the data in the original text
file.

We traverse the dataStrings array
so.

We can splint each array element
into substrings using the ' ' char
as the separating char.

We use the int() function to
convert the array of substrings int
an array of int and return it and
assign it to the int array,
intData. The array intData
contains the seven int values on
one line of the file.

Since we know what each wvalue
represents we assign the value in
intData to the [i] element of
each parallel array.

Copyright Jim Roberts Pittsburgh PA 15221 March 2014

257/757 Class Notes #25 File Reading Page 9

More Files

Files can contain data in any format that a programmer desires. The previous
example was just one. We will look at two more formats and from there, you are on
your own if you need or want to store data in a file. It is not difficult; it just takes
some thinking and planning.

Sometimes we get data out of a spread sheet or on the web in a format that is not
what we want to use. Suppose we had data in a spreadsheet that had the high
temperatures for every day of the year. The spreadsheet has twelve lines; one for
each month. Each line has between 28 and 31 int values for the high temperature of
each day. Here is a fake version of what the spread sheet might look like -
remember the numbers are faked for this discussion.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
Jan 20 21 19 20 21 19 20 21 19 20 21 19 20 21 19 20 21 19 20 21 19 20 21 19 21 19 20 21 19 20 21
Feb 20 21 19 20 21 19 20 21 19 20 21 19 20 21 19 20 21 19 20 21 19 20 21 19 21 19 20 23
Mar 49 21 45 23 26 12 31 49 21 45 23 26 12 31 23 26 12 31 49 21 45 23 26 12 31 23 26 23 26 23 26
Apr 35 33 38 32 42 41 38 32 28 43 35 33 38 32 42 41 38 32 28 43 35 33 38 32 42 41 38 32 28 43
May 39 34 39 43 45 48 42 51 48 53 49 56 39 34 39 43 45 48 42 51 48 53 49 56 48 53 49 56 53 49 56
Jun 65 61 59 71 64 67 64 59 68 67 72 73 76 77 69 64 58 68 73 72 74 68 66 74 77 78 68 72 69 73
Jul 74 73 77 82 84 81 79 82 68 72 77 82 85 80 83 78 85 82 80 79 77 82 83 81 88 89 92 89 91 93 97
Aug 78 77 81 86 88 85 83 86 72 76 81 86 89 84 87 82 89 86 84 83 81 86 87 85 92 93 96 93 95 97 10
1
Sep 82 81 85 90 92 89 87 90 76 80 85 90 93 88 91 86 93 90 88 87 85 83 78 85 82 80 79 77 82 80 82
Oct 64 60 58 60 63 66 63 58 67 66 64 62 59 56 61 63 57 67 62 61 63 67 65 63 61 59 57 58 58 56 55
Nov 35 33 38 32 42 41 38 32 28 43 35 33 38 32 42 41 38 32 28 43 35 33 38 32 42 41 38 32 28 43
Dec 20 21 19 20 21 19 20 21 19 20 21 19 20 21 19 20 21 19 20 21 19 20 21 19 21 19 20 21 19 20 21

Copyright Jim Roberts Pittsburgh PA 15221 March 2014

