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Abstract. A formal model for defining transformations of languages of designs in terms of the
grammars which generate them is described in detail. First, a normal form for grammars is
presented which distinguishes two basic determinants of the compositional structure of designs in a
language: spatial relations and the order in which they are employed to generate designs. These
two constructive mechanisms are used to specify each rule in a normal form grammar. An internal
formal property of a normal form grammar called its recursive structwre is also characterized. Rules
of transformation are then defined which map the rules of a given normal form grammar onto rules of
new grammars by changing independently the two components of rules in the original grammar.

The new grammars produced specify new languages of designs. Of particular interest are those
transformations which preserve the recursive structure of the original grammar.

In part 1 of this paper (Knight, 1983a), a model for defining transformations of
languages of designs was sketched informally and considered in relation to other
approaches to transformation in design. It was proposed that descriptions of stylistic
change arid innovation could be treated by formulating rules of transformation
which change a grammar defining one style into a grammar (or grammars) defining
another style (or styles). Those ideas, along with some preliminary formalisms, are
now developed in detail.

A normal form for shape grammars

To facilitate the comparison and construction of languages of designs via the grammars
which define them, a standard format or normal form for expressing the rules of
grammars is defined. This normal form makes explicit (1) the spatial relations used
to construct designs in a language and (2) external (nonspatial) controls on the
structure of rule applications in the generation of these designs. Both determine the
characteristic spatial features and organization of designs in a language.

The specification of a grammar in normal form follows the programme outlined by
Stiny (1980b) with some modifications and refinements of the stages involved. Each
stage of this new programme requires a more detailed definition of shapes and rules
than the corresponding stages of the earlier, more basic programme. For this reason,
a thorough understanding of the earlier programme and its applications or of the
more general formalism (Stiny, 1980a) and its applications is essential to understanding
the programme given here. The sequential ordering of stages in the programme does not
imply that stages are obligatory, sequential steps in the specification of a normal form
grammar. Each stage entails a description of some component of the final grammar. If
any stage is omitted, it can be reconstructed from information given in some later stage.

Stage 1 A vocabulary of labelled (and possibly parameterized) shapesV is defined.
A labelled shape o is given by ¢ = sp, where s is a (parameterized) shape and P is a
€ Present address: School of Architecture and Urban Planning, University of California, Los Angeles,
CA 90024, USA

() 1 this and following sections, the term ‘labelled shape’ is generally understood to include
parameterized labelled shapes whenever it refers to a labelled shape in the vocabulary, spatial
relations, or rules which specify a grammar.
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set of labelled (parameterized) points associated withs. Labelled shapes can be defined
either in two or in three dimensions. The definition of a labelled shape here
corresponds exactly to the earlier definition of a labelled shape (Stiny, 1980a) given
by the ordered pair (s, P).

Stage 2 A set of spatial relations between labelled shapes in the vocabulary is defined.
Each spatial relation S is specified by a set {(sp);, (sp)as -t (sp)n}, 1 2= 1, where each
(sp); is a labelled shape. In the usual case and in most of the examples given in this
paper, a spatial relation S consists of a pair of shapes, thatis, § = {Sp, tg), where sp
and 7, are labelled shapes.

Stage 3a Shape rules are defined in terms of the spatial relations given in the
previous stage. Similar to type 1 and type 2 shape rules (Stiny, 1980b), these rules
allow labelled shapes, as distinct from shapes, to be added to or subtracted from a
design being generated. Because shapes in spatial relations are labelled, the rules given
in terms of them will immediately restrict the language of designs produced by
analogous rules given in terms of spatial relations between unlabelled shapes.

The two types of shape rules, corresponding to the operations of addition and
subtraction of labelled shapes, are:

type It (5p)y + (o) + oo F (Sp)m = (Sp)y +(sp)y + oo+ (2)n
type II (Sp)1 + (5}7)2 +..+ (SP)n e (SP)X + (SP)Z + ...+ (SP)m 3

where {(sp)1, (5p)2, - (Sp)n} is a set of labelled shapes specifying a spatial relation
and {((sp)y, (Sp)2s s (Sp)m} is @ subset of {(sp)1, (Sp)2s s (Sp)n . In the typical case,
rules of type I and type II are of the form:

typel: o = sp+ig,
type IlI: sp+1p > 0,
where 0 = sp Or tp, and {sp, 75} is a set of labelled shapes specifying a spatial relation.

Stage 3b It turns out that rules of types I and II are not powerful enough to describe
any language of designs, definable in terms of other shape grammar formalisms. This
is because a type I or II rule only allows labelled shapes to be added to or subtracted
from a design; labelled shapes cannot be both added to and subtracted from a design
in a single step. If this were permitted, additional controls over the order and frequency
of rule applications would be made possible. With type 3 and 4 rules (Stiny, 1980b),
for example, this is handled by allowing labels to be defined independently of shapes.
Thus, although rules do not permit the simultaneous addition and subtraction of
shapes, they do permit the simultaneous addition and subtraction of the labels
associated with these shapes. The net result is that labelled shapes can be added to
and subtracted from a design in just one step. However, rules now no longer correspond
to simple spatial relations between labelled shapes. Nor, as will be shown, do they
adequately isolate important relationships between labels, shapes, and rules.

With type I and II rules, an additional mechanism is needed which performs the
same function as the simultaneous addition and subtraction of labelled shapes, but
which operates independently of spatial relations. For this purpose, additional labels,
called stare labels are introduced. An ordered pair of state labels (g, q,) is associated
with each shape rule of type [ and type I to determine shape rules of types Il and
IV, respectively:

type HI: ((sp)y + (p)a+ oo + (80D, @1 = (sp)y F+(sp)at oo +(SpIas 420
type IV: ((sp)y + (p)at oo + (Sphns @) = Lsp)y+(sphat oo H(SP)ms 42)
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or more typically:
type lII: (0, ;) > (p+ip, q2) s
type Vi (sptig, g0 = {0, qa7 .

Notice that the formalism for type 11l and IV rules (and for type I and II rules)
allows for rules to be defined where (sp); +(5p)y + ... +(5p) is equal to
(sp); + (sp)y + ... +(sp)n. This occurs when the subset {(sp);, (Sp)zs oy (Sp)m} Of the
set ((sp)gs (5p)a s -oos (Sp)n} specifying a spatial relation is also equal to it. Rules like
this may be viewed as either type III or type 1V (or, in stage 3a, as either type I or
type II). In the typical case, such rules are of the form (sp, q1) = {Sp, q,) Where the
set {sp} is the spatial relation from which a rule is defined.

For the purposes of later transformations, each type 111 and type IV rule is always
associated with, and given in terms of, the unique spatial relation and the unique pair
of state labels which define it.

Formally, the state labels ¢, and g, are attached to unrestricted parameterized
points associated with the labelled shapes on the left-hand and right-hand sides of
these rules. This allows rules to be applied in the usual way. As far as their function,
however, state labels may be considered to be associated with rules and not with shapes.
To explain this point, a short digression on the role of labels in grammars is necessary.

Labels in a shape rule normally supply additional information not provided by the
shapes themselves as to (1) how, (2) where, and (3) when a shape rule may be applied
to a design being generated. Let the symbol v denote such a design and let o = §
denote a shape rule. The function of a label or set of labels is determined by its
occurrence in both o and v and, less directly, by its occurrence in 8 since this
decides its subsequent occurrence in designs generated from 7.

In case (1), labels specify under which euclidean transformations a rule can be
applied to a subshape of y similar to o These labels alter the symmetry of cwand of
the subshape of vy similar to it. Numerous examples of this kind of labelling are given
by Stiny (1980b).

In case (2), labels specify to which subshape or subshapes of ~y similar to « a rule
may be applied. These labels identify, but do not alter the symmetries of, o and the
subshape of + similar to it. Thus, they do not restrict the euclidean transformations
under which the rule can be applied.

In case (3), labels specify that a rule may be applied to a subshape of v similar to
o simply by being associated with the same point or points relative to « and to the
subshape of « similar to it. These labels are distinguished from the previous two
kinds because they do not need to be associated with any particular point or points
in « and 7 so long as the preceding criterion is satisfied. If they are removed both
from « and v, the rule would apply in exactly the same way or ways. Thus, they do not
restrict the subshapes to which the rule can be applied or the euclidean transformations
under which it can be applied. This kind of labelling is most frequently used to indicate
successive stages in the generation of a design. [For example, see the grammar for
generating Palladian villas (Stiny and Mitchell, 1978a) and the grammar for generating
Japanese tearooms (Knight, 1981a).] Here, labels regulate the sequence and repetition
of rule applications.

In the first two cases, labels are spatial. Their locations relative to the shapes with
which they are associated are essential to their function. In the third case, labels are
nonspatial.  Their locations are not important; only their presence is. They simply
indicate the stage or state a shape must be in for a rule to apply.

Normally, the rules of a grammar do not express distinctions between spatial and non-
spatial labels. In a type 3 or type 4 shape rule (Stiny, 1980b), for instance, both kinds
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of labels are included in the single sets of labels associated with the shapes on each
side of a rule. When rules are given in the normal form presented here, however,
spatial labels are clearly differentiated from nonspatial labels. Spatial labels are labels
which are associated with shapes to form labelled shapes in the vocabulary, in spatial
relations, and in type I and II shape rules. Nonspatial or state labels are labels
associated with type I and Il shape rules to define type 111 and 1V shape rules.

To avoid confusing spatial labels with state labels in graphic representations of rules
and in rule applications, the sets of symbols which comprise the two must be disjoint.
In the examples given in this paper, all state labels are denoted by natural numbers or
by the symbol F. A special symbol = is used to denote a variable state label. If the
symbol # appears on either the right-hand or left-hand side of a rule, any state label
may be substituted for it. When the symbol # appears on both sides of a rule, the
same state label must be substituted for it on each side. The rule is then applied in
the usual manner. All spatial labels are denoted by symbols other than natural
numbers, £, and #. In graphic illustrations of rules, state labels are normally located
above the labelled shapes in these rules. If no state label appears on either side of a
rule, the symbol # is assumed. Of course, any other conventions for depicting labels,
either graphically or symbolically, which are well defined and do not conflict with
the basic formalism for type 11l and IV rules would be equally acceptable.

The different results of defining normal form rules using different kinds of labels
are illustrated in figures 1, 2, and 3. In each of these figures, rules are applied
recursively to the grid design on the left to produce any one of the grids with
embedded triangles on the right as well as other designs not shown .

Figure 1 shows three sets of rules which use only nonspatial or state labels. In
figure 1(a), the rule can be applied to place a triangle in any square in the grid any
number of times. In figure 1(b), the rule can be applied to place a triangle in any
square in the grid only once. In figure 1(c), the rules apply to place at least one and
at most two triangles in the grid. Notice that in each of these sets of rules, labels do
not restrict the euclidean transformations under which a rule can be applied or the
subshapes (squares) of the grid to which a rule can be applied.

Figure 2 shows two sets of rules which use only spatial labels. Rules in figure 2(a)
contain ‘where’ labels. These rules can be applied under any appropriate euclidean
transformations to place one or more triangles in any square labelled by the symbol ».
Rules in figure 2(b) contain ‘how’ labels. These rules can be applied under restricted
euclidean transformations to place at most one triangle for any symbol e labelling a
square in the grid. Notice that in both sets of rules there are no restrictions on the
repetition or order of rule applications other than those given by the labelled shapes
in these rules.

Figure 3 shows two sets of rules which use both state labels and spatial labels. State
labels are added to the rules of figure 2(a) to define the rules of figure 3(a). Here,
rules apply under any appropriate euclidean transformation to place only one triangle
in any square labelled by the symbol e. State labels are added to the rules of
figure 2(b) to define the rules of figure 3(b). Here, rules apply under restrictec
cuclidean transformations to place a triangle in just one square labelled by the
symbol e,

Stage 44 An initial shape is defined. An initial shape / of a grammar is given by
I= sp)y +(sp)y + .. Gl o)y k2 1, where {(sp), (Sp)3, -y (5p)e} i5 2 set of
labelled shapes specifying a spatial relation and ¢, is the second coordinate of a pair
of state labels (#, qo). The first coordinate of this pair is a dummy label which

@) Readers uncomfortable with the spatial ambiguities of the grid shape may wish to consider rules
to apply only under isometric transformaticns.
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Figure 1. Normal form rules which use only nonspatial or state labels.
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Figure 2. Normal form rules which use only spatial labels. In (a), rules contain ‘where' labels; in
(b), rules contain ‘how’ labels.

design in a derivation rules designs produced by applying rules to design at left
1 1 2 1 1 1
A . L FP ! AN 74 T
. T Ab S t .
I R N
: . 2—7 I_] 4 * a N
7 7 AV g pNirg NN N
tL i g ] 4
(@)
1 1 2 2 2 2
f ] CLF 1 <
;F : ; L H L_J
L. % 2 2 % I I ! r
A L 1
L J I I J
(b)

Fiéure 3. Normal form rules which use state labels and spatial labels. Rules in (a) are defined by
adding state labels to the rules in figure 2(a); rules in (b) are defined by adding state labels to the
rules in figure 2(b).
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has no function in the grammar, but which facilitates subsequent definitions of
transformation rules. Usually, the initial shape consists of a single labelled shape
together with a state label, that is, J = (sp, go). Like type III and IV shape rules,
the initial shape is always associated with, and given in terms of, the unique spatial
relation and the unique pair of state labels which define it.

Stage 4b A set of final states is defined. Each final state is denoted by a state label.
In the examples given here and in part 3, the set of final states consists of one final
state denoted by the symbol F. In the standard shape grammar formalism, a final state
is always indicated by a blank or empty state label—a label formally equivalent to
any other final state label.

Stage 5 A shape grammar is defined in terms of type III and 1V shape rules, the
initial shape, and the set of final states. Any design in a final state and with no other
(spatial) labels associated with it is a member of the language of designs defined by
the grammar,

In figure 4(a), a very simple example of a normal form grammar is shown. The
spatial relations and ordered pairs of state labels associated with the initial shape and
rules of this grammar are shown in figures 4(b) and 4(c), respectively. The grammar
generates an infinite language of designs. Four designs in this language are illustrated
in figure 4(d).

G:
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Figure 4. (a) A normal form grammar G. (b) The spatial relations associated with the grammar in (a).
The labelled shapes sp and g in each spatial relation as well as their shape union sp+ I, are shown.
(c) The ordered pairs of state labels associated with the grammar in (a). (d) Four designs in the
language generated by the grammar in (a).
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Clearly, a normal form shape grammar will not usually be the shortest or most
concise one for defining a particular language. Rules must be broken down into
discrete steps involving the elementary operations of addition and subtraction of
labelled shapes and changes in states. However, by demanding that shape rules take
this simple form, two fundamental determinants of the compositional structure of the
designs they generate are isolated: spatial relations and nonspatial mechanisms for
ordering spatial relations in rules. Transformations of grammars and the languages of
designs they generate can now be defined in a straightforward way. By changing
either the spatial relations or the state labels which specify the rules and initial shapes
of grammars, new rules and initial shapes of new grammars, and from them, new
languages of designs are created.

Nonetheless, changes to spatial relations and state labels should not be made in a
completely arbitrary and unrestricted way. This would lead to equally arbitrary and
unrestricted transformations. For a transformation to have any innovative value—to
produce grammars which yield new but nonrandom languages—and for a transformation
to have any explanatory value—to demonstrate convincingly a relationship between
two grammars and the languages they generate—more information is needed about the
structures of the grammars themselves and thereby about the languages they define.
If it can be shown that a transformation preserves some fundamental formal property
of a grammar and if it can be shown as a result that individual changes to the grammar
are connected in some way, then there are adequate grounds for asserting that a
grammar and a transformation of it are related and that the transformation accounts
for this relationship in a meaningful way.

Recursive structures of shape grammars

A very basic property of a grammar, one that imposes a meaningful constraint on
possible transformations of it, is its recursive structure. The recursive structure of a
normal form grammar G is given by a relation R(G) on the set of rules and initial
shape of which it is comprised. R(G) is defined in terms of the way these rules are
linked to each other and to the initial shape in selected, typical derivations of designs
in G.

Informally, an ordered pair (rule x, rule y) is a member of R(G) whenever

(1) rule x is a type lII (addition) rule in G or the initial shape / of G,

(2) rule y is a type Il or type 1V (addition or subtraction) rule in G, and

(3) in a derivation of a design, rule y is applied to that part of the design which
includes the labelled shape or subshape of the labelled shape which was added by a
previous application of rule x.

Thus, when generating a design, applying rule x makes it possible to apply rule y
subsequently.

Because it may be impossible to have a complete knowledge of how the rules of a
grammar apply to produce designs or, more specifically, to know all possible designs
and derivations of designs in the grammar, a recursive structure is defined relative to a
limited understanding of the language of designs produced by a grammar, namely, in
terms of a finite subset of the language which we know the grammar generates. Thus,
whenever multiple understandings of a grammar and its language are possible, multiple
definitions of its recursive structure may also be possible. This appeal to a known
part of a language as a way of fixing our knowledge of it, however, is not unusual.

In fact, the standard method for describing the language generated by a grammar is to
give a finite catalogue of representative designs in the language. [For example, see
the catalogues given for the language of Hepplewhite chair-back designs (Knight, 1980)
and the language of Terragni-style architecture (Flemming, 1981).] The recursive
structure of a grammar is similarly specified by means of a finite catalogue of designs
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and their derivations. Given a grammar G and aset D = {D;, D,, ..., D,}, n = 1, of
derivations of designs in G ¥, R(G) is formally defined as follows.

Let R;(G) be the recursive structure of G defined on the basis of a single
derivation D; in the set D. R;(G) is defined recursively in parallel with the derivation D;
with the procedure given below. R{G) is then determined by taking the union of
every R,;{G) defined from a corresponding derivation D; in D. More precisely,
R(GY=R{(GYURGYU ... URG).

A procedure for defining R;(G ) from a derivation D; of a design is now given. In
each step x of this procedure, R;(G) is specified in terms of a labelled shape in a
state g called Z(x) and a labelled shape called Z'(x). T(x)issimply the design in step x
of the derivation D;. T'(x) is a labelled shape in step x of a derivation parallel to D).
£'(x) is always made up of and given in terms of labelled shapes in the vocabulary of
labelled shapes which make up the initial shape and rulesin G. £'(x) represents the sub-
structure of £{x). If no subtraction rules are used, X (x) without its state label is always
identical to Z'(x). Otherwise, Z(x) without its state label is always a subshape of Z'(x).

Recursive definition of R{(G ).
Base:

Z0

I

(sphy + (sp)y + .o+ (Sphis o)
initial shape of G,

Z0) = (sp)y +(p)y + oo+ (spl »
R{(G)= 0.

Il

Recursion:
A rule y is applied in the standard way to a previously generated design Z(x).
(1) If rule y is a type IIl rule (sp, q;) = (sp+1g, ) ¥, then

Zx+1) = [B0)—1(sp, gD+ 7(spt 19, q2))

Let u be a subshape of £'(x) made up of some of the labelled shapes in it such
that 7(sp) is a subshape of u, and for every labelled shape ¢ in u, 7(sp) is not a
subshape of u—o. In other words, u is a least collection o+ o, +...+¢,, n 2 1, of
labelled shapes of which 7(sp) is a subshape.

Let {rule x,, rule x,, ..., rule x,,}, m 2 1, be a set of type Il addition rules
(possibly including the initial shape) in G. A rule is a member of this set if and only
if it added a labelled shape o; in the collection specifying ¢ to a design in a previous
step of the derivation of Z(x). Then,

x+1) = Zx)+1(tp)
and
R{G) = Ri(G) U {(rule xy, rule »), (rule x,, rule y), ..., (tule x,,, rule 3)}.

In the simplest case, u consists of a single labelled shape and one ordered pair of
rules is added to R;(G). When u consists of more than one labelled shape, it is an
emergent shape—a shape which results from several rule applications. More than one
pair of rules may then be added to R,(G).

3 When a design can be generated in more than one way by rules in &, multiple derivations of this
design can be included in D.

@) For ease of exposition, type I and IV shape rules are given here in terms of the typical forms
of rules (see preceding section). The procedure can easily be generalized to include any type Il or
type 1V rule.
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Figure 5. Defining the recursive structure of the grammar of figure 4(a). (a) A set D of derivations
of designs. Dy, I, D3, and Dj are derivations of designs 1, 2, 3, and 4, respectively, in figure 4(d).
(b) The recursive structures R;(G), R;(G), R5(G), and R4(G). (c) The complete computation of

R3(G). In each step x of the computation, 2(x), £'(x), and R3(G) are shown. The subshape p of
2'(x) is shown by thick lines. Labels inside u are also part of g. (d) Definition of R(G).
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Ry(Gy= @ U, rule 1}
= (], rule 1}

RyGy= W, ru

= {(J, ru

13V Yrule 1, rule 2))
1), (rule 1, rule 2}

& @

R5(GY = {(J, rule 1), (rule 1, rule 23} U {(rule 2, rule 1)}
= {(/, rule 1), {rule 1, rule 2}, (rule 2, rule 1)}

R4(GYy = {{J, rule 1), (rule 1, rule 2, (rule 2, rule 1)} U {rule 1, rule 23}
= {(/, rule 1), (rule 1, rule 2), (rule 2, rule 1)}

R3(G) = {{J, rule 1), (rule 1, rule 2), (rule 2, rule 1)} U {{J, rule 3)}
= {(/, rule 1), (rule 1, rule 2), (rule 2, rule 1), (J, rule 3)}

&

R4(G) = {{, rule 1), (rule 1, rule 2), (rule 2, rule D), (J, rule 3)} U {(rule 1, rule 4)}
= {(/, rule 1), (rule 1, rule 2), (rule 2, rule 1), (, rule 3), (rule 1, rule 4)}

R3(GY = W/, rule 1), (rule 1, rule 2), (rule 2, rule 1), (/. rule 3), (rule 1, rule 4)} U {(rule 2, rule 3)}
{(, rule 1), (rule 1, rule 2), (rule 2, rule 1), (/, rule 3), (rule 1, rule 4), (rule 2, rule 3)}

it

R3(G)

i

(I, rule 1), (rule 1, rule 2), (rule 2, rule 1), {4, rule 3), (rule 1, rule 4), (rule 2, rule 3)} U {(rule 1, rule 4)}
= {(I, rule 1), (rule 1, rule 2), (rule 2, rule 1), (J, rule 3), (rule 1, rule 4), (rule 2, rule 3y}

R3(G) = {(/, rule 1), (rule 1, rule 2), (rule 2, rule 1), {/, rule 3), (rule 1, rule 4), (rule 2, rule 33 U {(rule 2, rule 3)}
= {(f, rule 1), (rule 1, rule 2), (rule 2, rule 1), {J, rule 3), (rule 1, rule 4), (rule 2, rule 3)}

Figure 5 (continued)



RRS——

140 T Weissman Knight

(2) If rule p is a type IV rule Gptig, gy =™ Sp, qy), then
Z+1) = [Z) = 7{sp +1g, g )]+ 7(sp. q2)) .

Let u be a least collection of labelled shapes in £'(x) [as in case (1)] such that
7(sp + 7p) is a subshape of p.
Let a set of type 1l addition rules be defined as in case (1). Then,

S+ = 2,

and R;(G) is defined as in case (1).
In the simplest case, u consists of two labelled shapes and two pairs of rules are
added to R{G).

(3) If rule y is a type III or IV rule {sp, q;) ~ (sp, g4), then
Zx+1) = [Z(x) = 1Usp, g N+ 7(sp, q3)) .

Let u be a least collection of labelled shapes in £'(x) [as in case (1}] such that
7(sp) is a subshape of u.
Let a set of type Il addition rules be defined as in case (1), Then,

S'x+1) = Z'(x)

{as in case (2) above because no labelled shapes are added to the design] and RA(G) is
defined as in case (1). ’
The simplest case is the same as that given in case (1).

When labelled shapes in rules are parameterized, the definitions given here are easily
extended by including wherever necessary the assignments under which rules are
applied®,

Figure 5 shows how the recursive structure of the grammar of figure 4(a) is
defined. It is specified in terms of a set D containing derivations D,. Dy, Dy, and D,
of designs 1, 2, 3, and 4 shown in figure 4(d). D,, D,, D, and D, are illustrated in
figure 5(a). These derivations are used to compute Ry(G), R,(G), R3(G), and R4(G)
given in figure 5(b). Other possible derivations of designs 1, 2, 3, and 4 define
recursive structures identical to R,(G), R,(G), R3(G), and R,(G). The complete
computation of R3(G) is shown in figure 5(¢). Notice that the number of times a
rule applies in this derivation has no bearing on the definition of R;(G). Once a
connection between two rules is established and an ordered pair is added to R4(G),
any repetition of this connection is not recorded. R(G), Ro(G), and R,(G) are
computed in essentially the same way as R;3(G).

R(G) is defined in figure 5(d). Observe that R,(G) = R;(G) = R4(G) = R(G).
Because all derivations are repetitions of a derivation of design 2, the inclusion of any
other derivation of a design in D does not alter the definition of R(G). Of course,
the recursive structures of grammars more complex than the one given here will
generally be dependent upon more than one derivation of a design.

Once the recursive structure of a grammar is defined, the recursive structure of any
subset of the rules and the initial shape of the grammar can also be defined. The
recursive structure of a subset G’ of a grammar G is the subset of the recursive structure
of G which contains all and only those pairs of rules (and the initial shape) in G'.

®) A stricter, more detailed definition of recursive structure can be obtained on the basis of this
same procedure, where R(G) is a relation, not on the rules and initial shape of G, but on the
labelled shapes in these rules and initial shape. Each labelled shape on the left side of a type [l or
type 1V rule y is linked to labelled shapes in type Il rules x,, X,, ..., x,,, which are added to a
design, to form ordered pairs in R(G). This definition of recursive structure, however, is slightly less
intuitive and more difficult to define informally than the one presented above. Both definitions
characterize the structure of rule applications in a grammar in essentially the same way,
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Pairs in R(G') are thus determined by only those derivations or parts of derivations
included in the catalogue D, which use rules in ¢'. Derivations using rules in G' may
terminate with finished designs or, if they are partial, they may terminate with
unfinished, partial designs which correspond to the completion of a particular stage or
stages in the grammar. [For instance, see the designs in the catalogues of Palladian
room layouts (Stiny and Mitchell, 1978b), partial tearoom plans (Knight, 1981a), and
basic compositions of Frank Lloyd Wright prairie houses (Koning and Eizenberg, 1981).
All are partial designs derived using a subset of a grammar.] An illustration of the
recursive structure of a subset of a grammar is given in part 3.

Despite the length and detail of the formal definition of recursive structure, the
basic concept is not difficult to grasp. Once understood, a familiarity with the rules
of a grammar and the designs it generates is generally sufficient to enumerate pairs in
its recursive structure without following step-by-step the procedure given above.

Transformations of shape grammars

A transformation or, more generally, a family of transformations of a grammar in
normal form is now defined. Two independent stages are involved. In the first stage,
a set A of shape change rules is defined which transforms the set of spatial relations
associated with the rules and initial shape of a grammar into new sets of spatial
relations. For each transformation of a set of spatial relations defined by 4, a
corresponding transformation 7, of the rules and initial shape is defined.

In the second stage, a set B of state change rules is defined which transforms the
set of pairs of state labels associated with the rules and initial shape of a grammar
into new sets of pairs of state labels. For each transformation of a set of pairs of
state labels defined by B, a corresponding transformation T of the set of rules and
initial shape is defined.

Finally, each T; and each 73 defined in stages 1 and 2 are combined to produce a
complete transformation T of the set of rules and initial shape of a grammar. A
transformation 7 is a member of a family T of transformations, whenever the recursive
structure defined for the original grammar (or subset of the original grammar if 7 is
partial) is isomorphic to the recursive structure defined for the transformed grammar.

In any transformation of a grammar, the set of final states in the original grammar
is mapped unchanged to new grammars, since changes to final states can be made
indirectly by changing state labels associated with rules.

Stage la A set A of shape change rules is specified. A defines one-to-one mappings
or transformations of a set of spatial relations called the initial set of spatial relations,
into new sets of spatial relations called final sets of spatial relations. The initial set
of spatial relations is simply the set of spatial relations associated with the rules and
initial shape of a grammar together with a set of ancillary labels described below.
Shape change rules in A apply recursively to a spatial relation in the initial set to
derive a new or final spatial relation. When every spatial relation in the initial set is,
where possible, transformed using rules in 4 into a final spatial relation, a final set of
spatial relations is determined. Different applications or sequences of applications of
shape change rules in A to the same spatial relation in the initial set may produce
different final spatial relations. For each such spatial relation, a different transformation
of the initial set of spatial relations into a final set is defined.

To control the application of shape change rules to spatial relations, a set L of
nonterminal labels is defined in conjunction with A. Nonterminal labels are symbols
associated with labelled shapes in spatial relations in the initial set and with labelled
shapes in shape change rules in A. Nonterminal labels which are attached to
labelled shapes in the initial set of spatial relations are not shown, and have no function,
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in the corresponding grammar. To avoid confusion, these labels should always be
different from labels used in the grammar.

A shape change rule is a rule of the form Ux > vy, where uy and vy are labelled
shapes (X and Y may include nonterminal labels) and wuy is equal to (sg)g if and
only if vy is equal to (s#)g. A shape change rule Uy —> vy applies to a spatial
relation S whenever there is a labelled shape sp (P may include nonterminal labels)
in S and a euclidean transformation 7 such that 7(uy) is a subshape of sp. The
spatial relation S’ produced by applying the shape change rule to S is given by
S"=(S={sp) U {5p'}, where sp' is the labelled shape equal to [sp = r(uy)] + 7(vy).
Thus, a new spatial relation is formed by replacing the labelled shape sp in S with the
labelled shape sp". {Shape change rules are a generalization of the earlier shape
equivalence rules a < 8 (Knight, 1981b) which replace a shape s, but not a labelled
shape, in a spatial relation, whenever () or 7(B) is equal to, not just a subshape of, s.
Shape change rules apply indirectly to labelled shapes in a spatial relation in exactly
the same way that shape rules apply to labelled shapes.]

A shape change rule uy — Uy also applies to a spatial relation S whenever there is
a parameterized labelled shape sp in S, a euclidean transformation 7, and an assignment 4
of values to variables in sp such that 7(tx) is a subshape of h(sp). The new spatial
relation §' produced is given by §' = (§— {(5p1) U {sp'}, where s’ is a new parameterized
labelled shape defined in terms of a representative labelled shape in its family given by
[A(sp) = T(ux )1+ 7(vy). In other words, the shape change rule replaces a parameterized
labelled shape sp in § with a labelled shape to which parameters are attached
subsequently to define sp’. Parameters are not given explicitly in the rule itself(® .

To specify no change for a labelled shape in a spatial relation in the initial set, an
identity shape change rule Ux = uy must be defined. For instance, if Sp is a labelled
shape in a spatial relation S and there is a euclidean transformation 7 such that T(uy)is
a subshape of sp, then applying the rule Uy = ux to S simply replaces sp in S with Sp.

New spatial relations are generated from a spatial relation in the initial set by
recursively applying any applicable rule or rules in 4 to it. A new spatial relation is
called a final spatial relation if and only if all labelled shapes in it have been replaced
and no nonterminal labels are associated with it. A final set of spatial relations is
derived from the initial set by deriving a final spatial relation from each spatial
relation in the initial set, wherever it is possible to do so. When more than one final
spatial relation can be derived from any spatial relation in the initial set, then more
than one transformation of the initial set into a final set is determined. If there is
any spatial relation in the initial set which cannot be transformed into a final spatial
relation by rules in A, then A defines only partial transformations of the initial set.

Figures 6-9 illustrate how a set 4 of shape change rules is used to transform the
set of spatial relations associated with the grammar of figure 4(a) into new (final) sets
of spatial relations.

The initial set of spatial relations is shown in figure 6. Here, the set L of non-
terminal labels is empty. The example given in part 3 (Knight, 1983b) will demonstrate
how nonterminal labels can be employed in transformations.

A set A of shape change rules is shown in figure 7. To make clear the changes
in labelled shapes, the cartesian coordinate system in which labelled shapes are
located is represented by broken lines in these rules. These lines should not be
interpreted as part of a labelled shape in a rule. Rules 1 and 2 in 4 change the
position of an L-shape by reflecting it as shown. These rules can only apply to

() Definitions for shape change rules can be extended in the obvious way to define more general
kinds of rules called shape change rule schemata which specify families of shape change rules.
Definitions and examples of shape change rule schemata are omitted here only to simplify the
discussion and illustrations of transformations.
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spatial relations /. 1. or 2 in the initial set. Rules 3-3 are identity rules. Rule 3
can apply to any spatial relation in the initial set: rule 4 to spatial relations /7, 1.
2. and 3: and rule 3 to spatial relations 1, 2, and 4.

Figure 8 shows how a final set of spatial relations is derived from the initial set
using rules in 4. Notice that rule 3 is applied to spatial relations /. 1. and 2 to
produce identity changes. However, application of either rule 4 or § or recursive
application of rule 1 or 2 would also define an identity change.

Fifteen other final sets of spatial relations can be generated by applying rules in A
to the initial set. These, together with the final set shown in figure 8, are illustrated
in figure 9.

Of course, there are many other possible ways to transform the initial set of spatial
relations using different sets of shape change rules. Changing the vocabulary elements
which form spatial relations or simply changing the labels associated with shapes in these

A: -
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~ 3 ——
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3 < <
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Figure 6. The initial set of spatial relations for the Figure 7. A set 4 of shape change rules.

grammar of figure 4(a). To simplify illustrations of
spatial relations in this and other figures, they are
shown as the shape unions of labelled shapes in them.
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Figure 8. A derivation of a final set of spatial relations from the initial set of spatial relations
{figure 6) using shape change rules in A (figure 7). '
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Figure 9 (continued)

relations would produce equally interesting results. Readers interested in exploring
transformations of spatial relations should refer to Knight (1981b), where several
examples of simple changes to spatial relations are given. These changes, which are
limited to spatial relations between unlabelled shapes, are just a small sampling of
the diversity of ways that new spatial relations can be created.

Stage 1b For each transformation of an initial set of spatial relations into a final set
of spatial relations defined by A, a one-to-one mapping or transformation 7 of the
corresponding grammar is defined. Let T, be the set of all such transformations. A
transformation 7 of a grammar is specified by a transformation of its associated set
of spatial relations in an obvious way: T replaces each labelled shape sp in a shape

T4(G):
F

! <§
initial shape g\\?
F 1 g
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388 =< \>
NS AV
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4 2 - A~ \\ . < .
rules / </ . /(j) \/) e
final state: F
(a) (b)

Figure 10. (a) A transformation T of the grammar G of figure 4(a). T4(G) is defined using the
final set of spatial relations shown in figure 8. (b) Four designs in the language generated by T,(G).
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rule or initial shape of the grammar with a new labelled shape 5" if and only if 5’
replaces sp in the transformation of the spatial relation associated with this rule or
initial shape. More formally:

TiQesp)y + (5p)a + o F (phons @) = ((Sp)g + (Sp)y + .0 + ($phns g22)
= P TR F S gy) > (), (Spha + o+ (Sp)s qa)

where ((sp); + (p)y + oo + (Sp)ms ) = {sply + )y + o+ (5p),. g2) s a type I or
type 1V shape rule, and

Talisp)y + Gphy + o+ (phk, o)) = Wsp)y + (5p)y + o + Sphes Qo) s

where ((sp); + (sp)y + ... + ()i, @) is an initial shape.

Figure 10(a) shows a transformation 7, of the grammar G of figure 4(a). 7,(G) is
specified in terms of the final set of spatial relations shown in figure 8. Four members
of the language defined by T,(G) are illustrated in figure 10(b). This transformation,
along with transformations corresponding to each of the fifteen other final sets given
in figure 9, determine a set T, of sixteen transformations of the original grammar.

Stage 2a A set B of state change rules is specified. B defines one-to-one mappings or
transformations of a set of pairs of state labels called the initial set of pairs of siate
labels, into new sets of pairs of state labels called final sets of pairs of stare labels,
The initial set of pairs of state labels is simply the set of pairs of state labels associated
with the rules and initial shape of a grammar. A state change rule in B applies to a
pair of state labels in the initial set to produce a new or final pair of state labels.
When every pair of state labels in the initial set is transformed, where possible, into a
final pair of state labels using rules in B, a final set of pairs of state labels is determined.
Applications of different state change rules in B to the same pair of state labels
may produce different pairs of new state labels. For each such pair, a different
transformation of the initial set of pairs into a final set is defined.

A state change rule is a rule of the form r;: (¢, q;) = (g, q,)), where r; refers
to the ith shape rule or the initial shape / of a grammar, and (q,, q,) and (g, 9"
are ordered pairs of state labels. A state change rule rii gy, q:) = (g5, q5) applies to
an ordered pair of state labels (g,, ¢,) in the initial set whenever (q,. q,) is the pair
of state labels associated with the initial shape or shape rule /. The new or final pair of
state labels produced is the pair (¢}, ¢5). To specify no change for a pair of state
labels in the initial set, an identiry state change rule rii(qy.q2) > (q,, q,) must be
defined for that pair.

A final set of pairs of state labels is derived from the initial set by applying any
applicable rule in B to a pair of state labels in the initial set, wherever it is possible to do
so. If there is any pair of state labels in the initial set which cannot be transformed
by a rule in B, then B defines only partial transformations of the initial set.

B:
I (#F) e (EF) - (3, 1) I (&1
L 1) rE D)~ U F) 1 d,Fy
2 P i U, F) = (F, ) X E D
ERRC A ry (# 2 > (3, 8 3 (% 8)
4 (#, 4 roo(# 8 - (# 8) 4 (# %)
(a) (t) ()

Figure 11. A set of state change rules is defined for and applied to the pairs of state labels associated
with the grammar of figure 4(a). (a) The initial set of pairs of state labels; (b) a set B of state
change rules; (c) the final set of pairs of state labels produced by applying rules in B to the initial set.
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Like shape change rules, state change rules may be nondeterministic; different
state change rules can be defined for the same pair of state labels. Unlike shape
change rules, state change rules do not apply recursively. For any transformation of
a pair of state labels in the initial set into a pair of state labels in a final set, one and
only one state change rule is applied.

In figure 11, a set B of state change rules is defined for and applied to the set of
pairs of state labels associated with the grammar of figure 4(a). The initial set of pairs
of state labels is shown in figure 11(a), the set of state change rules in figure 11(b),
and the final set of pairs of state labels it generates in figure 11(c). Here, only one
final set can be produced by applying rules in B to the initia] set.

Stage 2b For each transformation of an initial set of pairs of state labels into a final
set defined by B, a one-to-one mapping or transformation T of the corresponding
grammar is defined. Let Ty be the set of all such transformations. A transformation 75
of a grammar is specified by a transformation of its associated set of pairs of state labels
in the expected way: T replaces each state label g in a shape rule or initial shape of the
grammar with a new state label ¢’ if and only if ¢’ replaces ¢ in the transformation
of the pair of state labels associated with this rule or initial shape. More formally:

TB(«S}:)! + (SP)’.’ + ...+ (Sp)m, q1> g <(SP)1 + (Sp)2 + ...+ (SP)H s 42»
= ((Sp)y F(Sp)a F o F PIms 1) > ()1 F(Sply e F (SPIns 42 s

where ((sp); +(Sp)y F oo + (phms q1) = ((Sp)y +(sp)2 + ... + (Spln, q2) is @ type Ul or IV
shape rule, and

Ta((sp)y + (Sp)g + oo+ (P)ks Qo)) = ((Sp)y +(Sp)a + oo T (Sp)s G0
where ((sp); + (sp)2 + ... + (Sp)x, q¢) is an initial shape.

Figure 12(a) shows a transformation 7y of the grammar G of figure 4(a). 7(G) is
specified in terms of the final set of pairs of state labels shown in figure 11(c).
TB(G)Z
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‘ <§
initial shape
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rules

final state: F
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Figure 12. (a) A transformation T} of the grammar G of figure 4(a). T(G) is defined using the final
set of pairs of state labels shown in figure 11(c). (b) Four designs in the language generated by 73(G).
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Because only one final set is determined by rules in B, T3 is the only member of the

set Ty of transformations of this grammar. 7T produces a small but nontrivial change
in the ordering of the rules of the grammar simply by changing its final state.

Figure 12(b) shows four designs in the language generated by the new grammar 73(G).

The composition of any 7} in T, defined in stage 1 with any 7 in T defined in
stage 2 produces a complete transformation T of the rules and initial shape of a
grammar. 7 is defined for only those rules and initial shapes for which T and Ty are
both defined. Thus, if either 7, or 73 is a partial transformation, then T is a partial
transformation. Because T, and Ty operate independently on different parts of shape
rules and initial shapes, the order in which they are composed has no effect on the
transformation 7T they determine. Thatis, T, Ty = Tp* Ty.

A transformation T is a member of a family T of transformations of a grammar G,
whenever the recursive structure defined for the subset G’ of G transformed is
isomorphic to the recursive structure defined for 7(G) (G'is equal to G if T is total;
G'is a proper subset of G if T is partial) R(G') is isomorphic to R[T7(G)) whenever

(rule x, rule ¥) is in R(G") « [T(rule x), T{rule ¥y isin RIT(G)H) .

In other words, the recursive structure of a (subset of a) grammar is isomorphic to
the recursive structure of another (subset of a) grammar whenever there is a one-to-one
transformation which maps every rule and the initial shape in (the subset of) one
grammar onto a rule and initial shape of (the subset of) the other grammar and which
maps every ordered pair in the recursive structure of (the subset of ) one grammar
onto an ordered pair in the recursive structure of (the subset of) the other gramimar.

To preserve the recursive structure of a grammar or subset of a grammar G under a
transformation T, whenever changes are made to the labelled shapes and state labels
in a rule x of G to define T (rule x) and (rule x, rule y) is in R(G"), then changes
must be made to labelled shapes and state labels in rule y to define T(rule 3) such
that [T(rule x), T(rule )] is in R[T(G)]. Using the recursive structure this way as a
guide for the definition of change rules ensures that the rules of new grammars
operate in the same way as the rules of the original grammar. Knowledge of how a
grammar works is thus transferred to new grammars whose structures are immediately
understood, though the designs they produce may be new and unexpected.

When defining rules for transformations which preserve recursive structures, shape
change rules and state change rules may still be considered completely independently
of each other. This is because each of the transformations T, and Ty, restricted to the
domain of the transformation T they determine, preserves the recursive structure of a
(subset of a) grammar G whenever T preserves the recursive structure of (asubset of) &
and vice versa. Thus, either of the grammars 7,(G) or T3(G) can be viewed as an
intermediate stage (logically, not historically) in the formation of T(G)H.

Figure 13 (see pages 149-152) illustrates the family T of transformations of the
grammar of figure 4(a) specified from the sets T, and Ty defined previously. All
transformations in T are total. A design in each of the languages generated by these
new grammars is also shown. Some of the designs (as well as the languages) determined
by different transformations of the original grammar are equivalent under euclidean
transformations. This arises from symmetry properties of the spatial relations
associated with the original grammar and is not a feature of transformations in general.

Figure 13 (pages 149-152). The family T of transformations of the grammar G of figure 4(a).

T contains sixteen transformations of G producing the sixteen new grammars, T,(G)-T;4(G), shown
here. A design in each of the languages generated by these grammars is also shown. The subscript 7
of each T;(G) corresponds to the number i given beneath a final set of spatial relations in figure 9
which, together with the final set of pairs of state labels shown in figure 11(c), determines 5(G).
Ti{G) is the composition of T4(G) and Tp(G) shown in figures 10(a) and 12(a), respectively,
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The recursive structures of all the grammars shown in figure 13 are identical. Each
is given by the set

((/, rule 1), (rule 1, rule 2), (rule 2, rule 1), {, rule 3), (rule 1, rule 4), (rule 2, rule 3);}.

The recursive structure of the original grammar is given by the same set (see figure 35).
Clearly, the recursive structures of all new grammars are isomorphic to the recursive
structure of the original one. This is illustrated graphically in figure 14 by representing
the recursive structure of the original grammar and the recursive structure of any new
grammar by directed graphs. Arrows from one structure to the other denote any
transformation of rules in the original grammar into rules in a new grammar.

Figure 14, An isomorphism between the recursive structure of the grammar of figure 4(a) and the
recursive structure of any of the transformations of it illustrated in figure 13. Both recursive
structures are depicted as directed graphs. The number at each node in 2 graph is the number of a
rule or initial shape of a grammar. Broken lines with arrowheads show the mapping from rules in
the original grammar onto rules in a transformation of it.

Redundant rules in shape grammars

As demonstrated in the previous section, a state change rule or rules in 4 can apply
to a spatial relation to generate more than one new spatial relation. Similarly, state
change rules in B can apply to a pair of state labels to produce more than one new
pair of state labels. Each of these different spatial relations and each of these different
pairs of state labels determines a different transformation of a rule. However, only
one transformation of a rule can be included in a transformation of a grammar.

In some circumstances, it may be desirable to include multiple transformations of a
single rule in the same transformation of a grammar. Allowing this would permit
greater freedom in defining the range of new languages of designs. To meet this end,
multiple copies of a rule, or redundant rules, can be introduced into a grammar.
Since they are exact duplicates of already-existing rules, redundant rules do not alter
the language of designs which the grammar generates. Instead, they allow the same
rule to be mapped onto different new rules in just one transformation. Thus, when
redundant rules appear in a grammar, they represent diverse but coexistent ways of
thinking about a single rule. Each copy of arule corresponds to a different conception
of how it can be changed. _

A redundant rule is added to the grammar of figure 4(a) to produce the grammar &
shown in figure 15(a). In figure 15(b), a transformation T of this grammar is
illustrated. T(G) is defined in terms of the set A given in figure 7, and the set B given
in figure 11(b) together with a new rule ry: (I, F) = (F, 1). A design in the language
defined by T(G) is also shown. The recursive structures of G and T(G) are isomorphic.
Both are given by the set

{{, rule 1), (rule 1, rule 2), (rule 2, rule 1), (/, rule 3), (rule 1, rule 4),
(rule 2, rule 3), (rule 1, rule 2, (rule 2’, rule 1), (rule 2', rule 3)}.

Readers are invited to define other transformations of G in the family of transformations
specified by the set 4 and the set B augmented as above. Sixty-four transformations
are possible.
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In general, a transformation of a grammar, either partial or total, with or without
redundant rules, may be only one step towards the development of a new grammar.
Transformations of the rules of different grammars as well as rules defined from
scratch can be combined to produce the final grammar. The more elaborate example of
a transformation given in part 3 of this paper (Knight, 1983b) is a good illustration
ofhowasnmﬂbutﬁgﬁﬁcmﬁsub%tofagnmnnm&snmwﬂxnwdtofonnthebaﬁsofa
new one.
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Figure 15. (a) A grammar G defined by adding a redundant rule, rule 2'. to the grammar of
figure 4(a). (b) A transformation T of G determined by the set A given in figure 7, and the set B
given in figure 11(b) together with a new rule ry: (1, F) = (F, I). A design in the language
generated by T(G) is also shown.
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