48-747 Shape Grammars

QUEEN ANNE HOUSES

Follows in the picturesque traditions of the 19th century

"one of the most complex habitations ever devised for commoners. It rejected the traditional concept of the unity of design, deliberately contrasting shapes, textures, and colors – solid and void, in and out, square and round, light and dark, rough and smooth. ...

... Paradoxically, this busy allover pattern created a unity of its own, very much like a patchwork quilt that makes a strong design out of many different fabrics."

Queen Anne houses

have history
have features
have texture
have structure
have aesthetics
have style

and ... are describable by shape grammars

among the worlds I study

recall that analytic shape grammars are intended for a particular style clarify **commonality of structure** and appearance manifest in buildings in a corpus;

supply **conventions and criteria** to determine whether any other building outwith the original corpus is an instance of the style; and

provide a **compositional** machinery to describe other buildings in the style

language → **style** ← shape grammar

a small sample of measured drawings of Queen Anne Houses in Shadyside, Pittsburgh, PA

the sources side hall plans

K Pt D D H

the source corner hall plans

Plan B4

Plan B5

Spatial Organization

Allocating rooms around a hall

Allocating the kitchen

Adding a stair hall

Extruding into the third dimension

Exterior Articulation

Generating a basic house

Generate roofs

Volumetric refinements

and additions

Articulation of elements

termination

stages in the shape grammar

spatial organization

applying shape rules

Figure 9. Layouts generated by application of kitchen rules 6, 8, 11, and 12 (see figure 7).

Figure 11. Layouts generated by application of stair rules.

adding a stair hall

Figure 15. Rules to generate front and back walls.

Figure 16. Rules to generate side walls.

Figure 17. Shapes generated by application of rules 1-8 (see figures 15 and 16).

Figure 18. Rules to generate roofs.

Figure 20. Rules for addition of porches.

chimneys

queen anne houses

condition(tube1,
'Tube has no geometry.').

Ihs(tube1, [Tube], [Part1, Part2]):schematic_tube_connections(Tube, Part1, Part2),
in_context(Tube),
not occurrence_has_geometry(Tube),

piping in the landing bay – boeing 777

an aside

humans can roughly guess the interior layout of buildings without physical entry.

can computer programs? or, rather, what does it take for a computer program to do so?

back to the worlds I study

Formally, we seek an algorithm given:

the footprint;

a reasonably complete set of exterior features, e.g. windows, chimneys and surrounding buildings;

a shape grammar describing the building style

Initial test cases:

Baltimore rowhouse

Queen Anne house

Bedroom

Bathroom

Hallway

and it does seem to work!