AutoCAD 3D – Chapter 1
3D Interface
1.1 Launching AutoCAD 3D

1. Choose **Start** from the Windows program manager.
2. Choose **Programs, Autodesk, AutoCAD 2007**.

Workspaces

AutoCAD workspaces are sets of menus, toolbars and dockable windows (such as the Properties palette, DesignCenter, and the Tool palettes window) that are grouped and organized so that you can work in a custom, task-oriented drawing environment.

1. Click **3D Modeling** and **OK**.
1.2 3D Interface

AutoCAD’s 3D Interface consists of three main areas:

- The dashboard
- Anchored palettes
- A 3D workspace
1.3 3D Dashboard

The dashboard consists of a set of control panels organized by function. For example, the top control panel contains commands that create and modify 3D solids; the second control panel contains commands and controls used to navigate 3D models.

1. Click on one of the panels to expand the display to show a slide-out panel that has additional controls.
1.4 Viewports

1. Choose View, Viewports, 4 Viewports.

or

2. Type -VPORTS at the command prompt.

Command: -VPORTS

Enter an option [Save/Restore/Delete/Join/S1ngle/?/2/3/4] 4: enter

Enter a configuration option [Horizontal/Vertical/Above/Below/Left/Right] <Right>: enter

Your screen will look something like the figure below with four views in one AutoCAD drawing.
1.5 Preset 3D Viewports

1. Choose View, Viewports, New Viewports
2. Click the dropdown option for Setup and click 3D.
3. Choose Four: Right as the viewport option.
1.6 Named Views

1. Choose View, Named Views…
2. Click the plus (+) sign beside Preset Views.
3. Click NE Isometric, Set Current, Apply, and OK.

Tip:

You can also choose View, 3D Views, and any of the preset 3D views.
1.7 VPOINT Command (Tripod)

Displays a compass and tripod for defining a view rotation. The compass represents a two dimensional globe.

1. **Choose** View, 3D Views, point

or

2. **Type** VPOINT at the command prompt.

Command: `vpoint`

Rotate/<Viewpoint><-0.614,-0.614,0.500>:

(enter)

3. **Click** a point on the compass to define the viewing angle.

Point in the center of the compass is the north pole

Middle ring of the compass is the equator

Entire outer ring is the south pole

Tripod
1.8 VPOINT Command (Rotate)

Enters a rotation angle at the viewpoint prompt.

1. Type VPOINT at the command prompt.
 Command: `vpoint`
 Rotate/<View point> <-0.614,-0.614,0.500>: `R (enter)`
 Enter angle in XY plane from X axis <225>: `225 (enter)`
 Enter angle from XY plane <30>: `15 (enter)`
1.9 DDVPOINT

 or

2. Type DDVPOINT at the command prompt.

 Command: *ddvpoint*

3. Set a viewing angle by typing the From X axis and XY Plane angle.

 or

4. Pick a viewing angle in the 2 graphics Left graphic = From X Axis

 Right graphic = In XY Plane

5. Click OK.
1.10 Plan View

1. Choose View, 3D Views, Plan View the one of the following: Current UCS, World UCS, Named UCS

 or

2. Type PLAN at the command prompt.

 Command: plan

 Enter an option [Current Ucs/Ucs/World] <Current>: World
AutoCAD 3D – Chapter 2
Thickness and Elevation
2.1 Thickness Command

2. Choose View, Viewports, 2 Viewports.
3. Press ENTER for the default of two vertical viewports.
4. In the left viewport, type PLAN and World.
5. Type THICKNESS at the command prompt.
 Command: thickness
 Enter new value for THICKNESS <0.0000>: 3
6. In the plan view, draw a rectangle using in the LINE command.

The lines will have a 3D “thickness” that can be seen in the 3D view.
2.2 Change Existing Thickness

1. Select the object whose thickness you would like to change (e.g. one line of the rectangle you drew in 2.1).

2. Choose **Modify, Properties**… or right click and choose **Properties**…

3. In the Properties dialog box type a new line thickness.

The following result is a new line thickness for the selected object.
2.3 Elevation

Stores the elevation for new objects relative to the current UCS for the current space.

1. Type ELEVATION at the command prompt.

 Command: elevation

 Enter new value for ELEVATION <0.0000>: 1.00

2. Draw two circles at the new elevation. Note that they appear to be “floating” 1 unit above the ground.
2.4 Elevation Shortcut

1. Type ELEV at the command prompt.

 Command: elev

 Specify new default elevation: <1.0000>: 1

 Specify new default thickness: <3.000>: 1

2. Draw a new line to see the elevation and thickness settings.
AutoCAD 3D – Chapter 3
Visualizing Your Model
3.1 HIDE Command

Regenerates a three-dimensional model with hidden lines

1. Open a drawing with 3D objects and display in a 3D view.
2. Choose View, Hide.
 or
3. Type HIDE at the command prompt.
 Command: hide
3.2 Visual Styles

A visual style is a collection of settings that control the display of edges and shading in the viewport.

1. Open a drawing with 3D objects and display in a 3D view.
2. Choose View, Visual Styles and one of the following style options.
3.3 Visual Style Manager

The Visual Styles Manager displays sample images of the visual styles available in the drawing. The selected visual style is indicated by a yellow border, and its settings are displayed in the panel below the sample images.

1. Choose View, Visual Styles, Visual Styles Manager… or
2. Type VISUALSTYLES at the command prompt.
 Command: visualstyles
3. Choose the desired option from one of those available in the drawing for 2D Wireframe, 3D Wireframe, 3D Hidden, Realistic, or Conceptual options.
3.4 Adaptive 3D Grid

When you choose a shaded or 3D wireframe visual style, the grid changes from a dotted grid to a rectangular grid. The new grid provides a better sense of a model's orientation in 3D. The rectangular grid supports perspective, can display major and minor grid lines, provides color options, and can automatically control the grid density when zooming in or out (adaptive grid.) You can change the grid settings using the drafting settings dialog box.

1. Choose View, Visual Styles and one of the following options:
 3D Wireframe, 3D Hidden, Realistic, or Conceptual.

Change the adaptive grid settings

1. Choose Tools, Drafting Settings, and the Snap and Grid TAB.
AutoCAD 3D – Chapter 4
Z Coordinates
4.1 3D Coordinates

Entering 3D Cartesian coordinates \((X,Y,Z)\) is similar to entering 2D coordinates \((X,Y)\). In addition to specifying \(X\) and \(Y\) values, you specify a \(Z\) value.

1. Open a drawing with 3D objects and display in a 3D view.
2. Type 3D Poly at the command prompt.
 Command: \texttt{3DPOLY}
 Specify start point of polyline: \texttt{1,1,0}
 Specify endpoint of line or [Undo]: \texttt{1,2,1}
 Specify endpoint of line or [Undo]: \texttt{2,2,1}
 Specify endpoint of line or [Close/Undo]: \texttt{2,1,0}
 Specify endpoint of line or [Close/Undo]: \texttt{1,1,0}

The result will be the following lines that are drawn in 3D:
4.2 Track in Z Direction

With AutoTrack (polar tracking and object snap tracking), you can track in the Z direction as well as in the XY plane. Similarly, when Ortho mode is turned on, you can lock the cursor to the Z direction.

1. Press F11 or click **OSnap Tracking** on the status bar if it is not already on.
2. Press F10 or click **Polar Tracking** on the status bar if it is not already on.
3. In a 3D view, issue the LINE command and draw a line in the Z direction using tracking.
4.3 Move in Z Direction

1. Open a drawing with 3D objects in it.
2. Type MOVE at the command prompt.
 Command: move
 Select objects: pick object in 3D view
 Select objects: press enter
 Specify base point or displacement:
 Specify second point of displacement or
 <use first point as displacement>: 0,0,1 or use polar tracking to move
 the object.

before move

after move
4.4 3D Point Filters

Draws in 3D Z direction by filtering X and Y coordinates.

1. Open a drawing with 3D objects in it.

2. Use the CIRCLE command and place it using 3D point filters (.xy)

3. Command: circle

4. Specify center point for circle or [3P/2P/Ttr (tan tan radius)]: .XY

5. of pick endpoint to filter

6. (need Z): 1

7. Specify radius of circle or [Diameter] <0.2500>: press enter
AutoCAD 3D – Chapter 5
User Coordinate System
5.1 UCS Icon

The UCS icon represents the orientation of the user coordinate system (UCS) axes and the location of the current UCS origin. It also represents the current viewing direction relative to the XY plane. AutoCAD displays the UCS icon differently for 2D, 3D and Paper Space environments.

1. Choose View, Display, UCS Icon.
 or
2. Type UCSICON at the command prompt.

 Command: ucsicon
 Enter an option [ON/OFF/All/Noorigin/Origin/Properties] <ON>:
 - **ON** Displays the UCS icon.
 - **OFF** Turns off the display of the UCSICON.
 - **All** Affects the display of the UCSICON in all viewports.
 - **Noorigin** Always displays the UCS at the lower left corner.
 - **Origin** Shows the UCS at the 0,0,0 origin of the current UCS.
 - **Properties** Changes the display properties of the UCS icons(s).
UCS Icon Properties

1. Choose View, Display, UCS Icon, Properties.
 or
2. Type UCSICON at the command prompt.
 Command: ucsicon
 Enter an option [ON/OFF/All/Noorigin/ORigin/Properties] <ON>: P
5.2 UCS Overview

The user coordinate system provides an alternate movable coordinate system for coordinate entry, planes of operation, and viewing. Most AutoCAD geometric editing commands are dependent on the location and orientation of the UCS. There are a variety of ways to set the User Coordinate System using the UCS command.

1. Type UCS at the command prompt.
 Command: `ucs`
 Enter an option [New/Move/orthoGraphic/Prev/Restore/Save/Del/Apply/?/World] <World>:

 New Defines a new coordinate system by one of six methods: Origin, Z Axis, 3 Point, Object, Face, View X, Y, Z

 Origin Defines a new UCS by shifting the origin of the current UCS, leaving the direction of the X,Y, and Z axes unchanged.

 ZAxis Allows you to define a new origin.

 3 Point Specifies a UCS by its origin and a point on the positive X and Y axes.

 Object Lets you define a new UCS by pointing at an object.

 Face Aligns the UCS to the selected face of a solid object.

 View Establishes a new UCS whose XY plane is perpendicular to your viewing direction (e.g. parallel to your screen).

 X/Y/Z Rotates the ucs around a specified axis

UCS Toolbars
5.3 3 Point UCS

The 3 Point option is one of the easiest ways to define a new UCS on a given 3D object.

1. Open a drawing with a simple 3D object (e.g. 3D box)

2. Type UCS at the command prompt.

Command: **ucs**

Enter an option [New/Move/orthoGraphic/Prev/Restore/Save/Del/Apply/?/World] <World>: **N**

Specify origin of new UCS or [ZAxis/3point/OBject/Face/View/X/Y/Z] <0,0,0>: **3**

Specify new origin point <0,0,0>: **pick origin**

Specify point on positive portion of X-axis <3.53,7.73,0.00>: **pick point for X direction**

Specify point on positive-Y portion of the UCS XY plane <2.53,8.73,0.00>: **pick point for Y direction**
New UCS
5.4 Plan UCS

To work in the plan view of your new UCS, use the PLAN command with the current UCS option. New entities that you draw will be in relation to this current UCS.

1. Type PLAN at the command prompt.
 Command: \texttt{plan}
 Enter an option [Current ucs/Ucs/World] <Current>: \texttt{press enter}
5.5 World UCS

The World UCS is the only UCS guaranteed to be the same in all AutoCAD drawings and can be used to set the UCS back to its original state. This is the UCS you should use when creating Wblocks and inserting Wblocks.

1. Type UCS at the command prompt.

Command: \texttt{ucs}

Current ucs name: *NO NAME*

Enter an option [New/Move/orthoGraphic/Prev/Restore/Save/Del/Apply/?/World] <World> W
5.6 View UCS

Establishes a new coordinate system whose XY plane is perpendicular to your viewing direction (i.e. parallel to your screen)

1. Type UCS at the command prompt.

 Command: `ucs`

 Current ucs name: *NO NAME*

 Enter an option [New/Move/orthoGraphic/Prev/Restore/Save/Del/Apply/?/World] <World>: N

 Specify origin of new UCS or [ZAxis/3point/OBject/ Face/View/X/Y/Z] <0,0,0>: vOrigin/ZAxis/3point/ OBject/View/X/Y/Z/Prev/Restore/Save/Del/?/<World>: V
5.7 Dynamic UCS

You can use the dynamic UCS to create objects on a planar face of a 3D solid without manually changing the UCS orientation.

During a command, the dynamic UCS temporarily aligns the XY plane of the UCS with a planar face of a 3D solid when you move the cursor over the face.

When the dynamic UCS is active, specified points, and drawing tools, such as polar tracking and the grid, are all relative to the temporary UCS established by the dynamic UCS. 1.

1. Click the DUCS icon on the status bar or press CTRL +D.
2. Type any draw command.
 Command: circle
3. Move the cursor to the face of the 3D object that you would like to draw on.
4. Click to begin drawing your new object.
5.8 Naming and Saving a UCS

User coordinate systems can sometimes be complicated and it is often useful to name and save them so you can quickly recall them.

1. Type UCS at the command prompt.
 Command: UCS
 Specify origin of UCS or
 [Face/NAmed/OBject/Previous/View/World/X/Y/Z/ZAxis]
 <World>: NA
 Enter an option [Restore/Save/Delete/?]: S

 Enter name to save current UCS or [?]: LeftSide
5.9 Restoring a UCS

A named and saved UCS can be restored at any time.

1. Type UCS at the command prompt.

 Command: **UCS**

 Specify origin of UCS or
 [Face/Named/Object/Previous/View/World/X/Y/Z/ZAxis]

 <World>: **NA**

 Enter an option [Restore/Save/Delete/?]: **R**

 Enter name to save current UCS or [?]: **LeftSide**
5.10 UCS Dialog Box

Displays and modifies defined and unnamed user coordinate systems, restores named and orthographic UCSs, and specifies UCS icon and UCS settings for viewports via a dialog box.

1. Chose Tools, Named UCS.
 or
2. Type UCSMAN at the command prompt.
 Command: ucsman
AutoCAD 3D – Chapter 6
3D Orbit
6.1 Constrained 3D Orbit

3DORBIT activates a 3D Orbit view in the current viewport. You can view your entire drawing or select one or more objects before starting the command.

When 3DORBIT is active, the target of the view stays stationary and the camera location, or point of view, moves around the target. However, from the user's point of view, it appears as if the 3D model is turning as the mouse cursor is dragged. In this way, you can specify any view of the model.

1. Open a drawing with 3D objects.
2. Choose View, Orbit, Constrained Orbit.
 or
3. Type 3D Orbit at the command prompt.
 Command: 3DOrbit
4. Click and drag to move your object in 3D.
6.2 Zoom and Pan in 3D Orbit

Zoom

1. Click with the **right mouse** button while in the 3D Orbit command.
2. Choose **Zoom Window** from the pop-up menu.
3. Zoom to a new area of the 3D drawing.
4. Click with the **right mouse** button while in the 3D Orbit command.
5. Choose **Zoom Previous** or **Zoom Extents** from the pop-up menu.

Pan

1. Click with the **right mouse** button while in the 3D Orbit command.
2. Choose **Other Navigation Modes** from the pop-up menu.
3. Choose **Pan**.
4. Pan to a new area of the drawing.
5. Click with the **right mouse** button while in the 3D Orbit command.
6. Choose **Other Navigation Modes** from the pop-up menu.
7. Choose Constrained Orbit to set the mode back to orbit.
6.3 Projection Mode

1. Click with the **right mouse** button while in the 3D Orbit command.
2. Choose **Perspective**.

Perspective view displays objects in perspective so that all parallel lines converge at one point. Objects appear to recede into the distance, and parts of the objects appear larger and closer to you. The shapes are somewhat distorted when the object is very close. This view correlates more closely to what your eye sees.

Parallel view displays objects so that two parallel lines in a drawing never converge at a single point. The shapes in your drawing always remain the same and do not appear distorted when they are closer.

Perspective View Parallel View
6.4 Visual Styles

Displays your objects in one of the following selected styles:

1. Click with the right mouse button while in the 3D Orbit command.
2. Choose Visual Styles from the pop-up menu.
3. Choose 3D Hidden, 3D Wireframe, Conceptual or Realistic.
6.5 Visual Aids

1. Click with the right mouse button while in the 3D Orbit command.
2. Choose Visual Aids from the pop-up menu.
3. Choose Compass, Grid, or UCS Icon.

Compass Grid

UCS Icon
6.6 Preset Views

Sets the 3D view while in the orbit command

1. Click with the right mouse button while in the 3D Orbit command.
2. Choose Preset Views from the pop-up menu.
3. Choose one of the following standard 3D views.
6.7 Free Orbit

1. Choose **View, Orbit, Free Orbit**.
The 3D Orbit Arcball appears.
2. Click on one of the 3D Orbit arcball locations to move the display of your object(s).

Outside the Arcball - Moves View about an axis that extends through the center (acts like twist)

Inside one of the small circles to the left/right - Rotates around the “Y” axis through the center.

Inside the Arcball - Allows movement in any direction

Inside one of the small circles to the top/bottom - Rotates around the “X” axis through the center.
6.8 Continuous Orbit

1. Choose View, Orbit, Continuous Orbit.
2. Click and drag to define the direction and speed of a continuous orbit for your object(s).
3. Press ESC on the keyboard to stop the orbit.
6.9 Other Navigational Modes

1. Click with the right mouse button while in the 3D Orbit command.
2. Choose Other Navigational Modes from the pop-up menu.
3. Choose one of the following modes.

Adjust Distance (4) Simulates moving the camera closer to the object or farther away.

Swivel (5) Changes the cursor to an arched arrow and simulates the effect of swiveling the camera. See 3DSWIVEL.

Walk (6) Changes the cursor to a plus sign and enables you to "walk through" a model at a fixed height above the XY plane, by dynamically controlling the location and target of the camera. See 3DWALK.

Fly (7) Changes the cursor to a plus sign and enables you to "fly through" a model without being restricted to a fixed height above the XY plane. See 3DFLY.

Zoom (8) Changes the cursor to a magnifying glass with plus (+) and minus (-) sign and simulates moving the camera closer to an object or farther away. Works like the Adjust Distance option. See 3DZOOM.
AutoCAD 3D – Chapter 7
3D Navigation
7.1 Creating a Camera

Sets a camera and target location to create and save a 3D perspective view of objects.

1. Open a drawing with 3D objects.
2. Choose View, Create Camera.
 or
3. Type CAMERA at the command prompt.

 Command: `camera`
 Current camera settings: Height=5.0000 Lens Length=50.0000 mm
 Specify camera location: `.xy`
 of (need Z): 7
 Specify target location: `endp`
 Enter an option
 `[?/Name/LOcation/Height/Target/LEns/Clipping/View/eXit]<eXit>: X`

Camera location using `.XY` filter and Z height of 7
Camera target
7.2 Viewing a Camera

Once a camera is created, it becomes a named view in the drawing and can be viewed using the Named View Manager. You can also view the camera using the view option when creating the camera.

1. Choose View, 3D Views, Southwest Isometric to be sure you are not in an existing camera view.
2. Choose View, Named Views.
3. Click the plus (+) sign beside Model Views.
4. Click Camera1, Set Current, Apply, and OK.

View from Camera
7.3 Camera Preview

Camera preview is a quick and easy way to see the properties of a camera before viewing from the camera.

1. Choose View, 3D Views, Southwest Isometric to be sure you are not in an existing camera view.
2. Zoom out until you see the camera in your 3D view.
3. Click once on a camera in your view.

The Camera Preview dialog box will show the view from the chosen camera. You can change the Visual style of this preview to 3DHidden, 3DWireframe, Conceptual, or Realistic.
7.4 Camera Properties

1. In a 3D isometric view, double click a camera.
7.5 Displaying and Plotting a Camera

Displaying a Camera

1. Choose View, Display, Cameras.

Plotting a Camera

1. If cameras are not already displayed in the drawing, click View, Display, Cameras.
2. Double-click a camera.
3. In the Properties palette, Camera section, Plot option, click Yes or No.
7.6 Adjusting Camera Distances and Swiveling a Camera

Adjust Camera Distance

1. Choose View, Named Views.
2. Click the plus (+) sign beside Model Views.
3. Click Camera1, Set Current, Apply, and OK.
4. Choose View, Camera, Adjust Distance.
5. Click and drag to zoom in or out about the camera,

Swivel a Camera

1. Choose View, Camera, Swivel.
2. Click and drag to swivel the camera,
7.7 DView Command

Defines parallel projection or perspective views by using a camera and target.

1. Type DVIEW at the command prompt.
 Command: \texttt{dview}
 Select objects or <use DVIEWBLOCK>: \texttt{pick objects}
 Enter option
 \texttt{[Camera/Target/Distance/POints/PAn/Zoom/TWist/CLip/Hide/Off/Undo]: PO}
 Specify target point <3.2567, 4.0405, 7.2994>: \texttt{pick target}
 Specify camera point <-4.0520, -3.2436, 14.3538>: \texttt{.XY}
 of (need Z): 7
 Enter option
 \texttt{[Camera/Target/Distance/POints/PAn/Zoom/TWist/CLip/Hide/Off/Undo]: D}
 Specify new camera-target distance <8.3066>: \texttt{click and drag new zoom}
 Enter option
 \texttt{[Camera/Target/Distance/POints/PAn/Zoom/TWist/CLip/Hide/Off/Undo]:}
 Regenerating model.
New DView
7.8 Walk and Fly

You can simulate walking and flying through a 3D drawing.

When you walk through a model, you travel along the XY plane. When you fly through a model, you are not constrained by the XY plane, so you appear to “fly” over an area in a model.

The following mappings are available for walking:

- **Up arrow / W key** Move forward
- **Down arrow / S key** Move backward
- **Left arrow / A key** Move left
- **Right arrow / D key** Move right
- **Drag mouse** Look around & turn
- **F key Toggle** Fly mode

1. Open a drawing with 3D objects and display in a 3D view.
2. Create a camera anywhere in the drawing and set the view to that camera.
3. Choose **View, Walk and Fly, and Walk.**
 or
4. Type **3DWalk or 3DFky** at the command prompt.
 Command: **3Dwalk**
5. The following walk and fly navigation mapping settings appear. Briefly look at the navigation keys, then choose close.
The following Position Locator dialog box will appear that you can use to navigate your drawing.

Press the Up, Down, Left, and Right keys on the keyboard to see how the camera location moves in the drawing and Position Locator dialog box. Move the camera and target in the Position Locator dialog box. Click and drag your mouse to “fly” through the drawing.

Close the Position Locator dialog box and try walking and flying using only the keys on the keyboard and mouse.
7.9 Walk and Fly Settings

 or

2. Type WALKFLYSETTINGS at the command prompt.

 Command: walkflysettings

3. Choose one of the following settings from the Walk and Fly dialog box. If you are working in a drawing with a large architectural scale, be sure to set your drawing units to a large number, similar to the scale of the drawing.

 ![Walk and Fly Settings dialog box]

 - Display instruction window:
 - When entering walk and fly modes
 - Once per session
 - Never
 - Display Position Locator window

 - Current drawing settings:
 - Walk/fly step size: 6.0000 drawing units
 - Steps per second: 2.0000
7.10 Animation Paths

1. Open a drawing with 3D objects and display in a 3D view and line or polyline representing a path for an animation

 ![3D view with path](image)

2. Choose View, Motion Path Animations.

 or

3. Type ANIPATH at the command prompt.

 Command: `anipath`

4. Click **Select Path** under the Link camera to: option and click on the line or polyline path.

5. Click OK to the default path name.

6. Click **Select Path** under the Link target to: option and click on the line or polyline path.

7. Click OK to the default path name.

8. Change other animation settings such as the frames per second, duration, resolution, etc.
9. Choose the Preview…button to preview your animation.

10. Close the animation preview and click OK to create an animation file.

11. Play your animation in a Windows or MacIntosh video review application.
7.11 3D Navigation Using the Dashboard

Regenerates a three-dimensional model with hidden lines

1. Choose **Tools, Palettes, Dashboard**.

 or

2. Type DASHBOARD at the command prompt.
 Command: **dashboard**
AutoCAD 3D – Chapter 8
3D Model Objects
8.1 Wireframes

A wireframe model is a skeletal description of a 3D object. There are no surfaces in a wireframe model; it consists only of points, lines, and curves that describe the edges of the object. With AutoCAD you can create wireframe models by positioning 2D objects anywhere in 3D space. AutoCAD also provides some 3D wireframe objects, such as 3D polylines (that can only have a CONTINUOUS linetype) and splines. Because each object that makes up a wireframe model must be independently drawn and positioned, this type of modeling can be the most time-consuming.

Wireframe lines in 3D
8.2 Surfaces

Surface modeling is more sophisticated than wireframe modeling in that it defines not only the edges of a 3D object, but also its surfaces. The AutoCAD surface modeler defines faceted surfaces using a polygonal mesh. Because the faces of the mesh are planar, the mesh can only approximate curved surfaces.
8.3 Solids

Solid modeling is the easiest type of 3D modeling to use. With the AutoCAD solid modeler, you can make 3D objects by creating basic 3D shapes: boxes, cones, cylinders, spheres, wedges, and tori (donuts). You can then combine these shapes to create more complex solids by joining or subtracting them or finding their intersecting (overlapping) volume. You can also create solids by sweeping a 2D object along a path or revolving it about an axis.
AutoCAD 3D – Chapter 9
2D Solids and 3D Faces
9.1 2D Solid

Creates solid-filled triangles and quadrilaterals.

1. Type SOLID at the command prompt.
 Command: solid
 First point: P1
 Second point: P2
 Third point: P3
 Fourth point: P4
 Third point: enter
9.2 3D Faces

3DFACE creates a three or four sided surface anywhere in 3D space. You can specify different Z coordinates for each corner point of a 3D face. 3DFACE differs from SOLID, which creates a three- or four-sided surface that is parallel to the current UCS and can be extruded.

1. Type 3DFACE at the command prompt.

 Command: 3dface

 First point: pick

 Second point: pick

 Third point: pick

 Fourth point: pick

 Third point: enter

3D Wireframe Lines

![3D Wireframe Lines](image1)

3D Face

![3D Face](image2)
9.3 3D Face Invisible Edge

With 3DFACE, you control which edges of a 3D face are visible, allowing accurate modeling of objects with holes. Entering i or invisible before the first point of an edge makes the edge invisible. Type 3DFACE at the command prompt.

1. Type 3DFACE at the command prompt.

 Command: 3Dface

 First point: P1

 Second point: P2

 Third point: i P3

 Fourth point: P4

 Third point: i P5

 Fourth point: P6

 Third point: P7

 Fourth point: P8

 Third point: enter

 NOTE: You must enter an “i” for invisible before the face is chosen.
9.4 Edge Command

1. Type `EDGE` at the command prompt.

 Command: `edge`

 Specify edge of 3dface to toggle visibility or [Display]: `pick edge`

 ** Regenerating 3DFACE objects...done.

 Specify edge of 3dface to toggle visibility or [Display]: `d`

 Enter selection method for display of hidden edges [Select/All]
 <All>: `a`

 ** Regenerating 3DFACE objects...done.

 Specify edge of 3dface to toggle visibility or [Display]: `press enter`
9.5 PFace

Creates a three-dimensional polyface mesh vertex by vertex

1. Type PFACE at the command prompt.
 Command: pface
 Specify location for vertex 1: pick point 1
 Specify location for vertex 2 or <define faces>: pick point 2
 Specify location for vertex 3 or <define faces>: pick point 3
 Specify location for vertex 4 or <define faces>: pick point 4
 Specify location for vertex 5 or <define faces>: pick point 5
 Specify location for vertex 6 or <define faces>: pick point 6
 Specify location for vertex 7 or <define faces>: pick point 7
 Specify location for vertex 8 or <define faces>: enter
 Face 1, vertex 1:
 Enter a vertex number or [Color/Layer]: type 1
 Face 1, vertex 2:
 Enter a vertex number or [Color/Layer] <next face>: type 2
 Face 1, vertex 3:
 Enter a vertex number or [Color/Layer] <next face>: type 6
 Face 1, vertex 4:
 Enter a vertex number or [Color/Layer] <next face>: type 7
 Face 1, vertex 5: enter
 Enter a vertex number or [Color/Layer] <next face>:
 Face 2, vertex 1:
 Enter a vertex number or [Color/Layer]: type 2
 Face 2, vertex 2:
 Enter a vertex number or [Color/Layer] <next face>: type 3
 Face 2, vertex 3:
 Enter a vertex number or [Color/Layer] <next face>: type 4
 Face 2, vertex 4:
AutoCAD 3D Tutorial

Enter a vertex number or [Color/Layer] <next face>: type **6**
Face 2, vertex 5:

Enter a vertex number or [Color/Layer] <next face>:
Face 3, vertex 1:

Enter a vertex number or [Color/Layer]: type **4**
Face 3, vertex 2:

Enter a vertex number or [Color/Layer] <next face>: type **5**
Face 3, vertex 3:
Enter a vertex number or [Color/Layer] <next face>: type **6**
Face 3, vertex 4:
Enter a vertex number or [Color/Layer] <next face>:
Face 4, vertex 1: enter
Enter a vertex number or [Color/Layer]:
10.1 Box

1. Type `AI_BOX` at the command prompt.
 Command: `ai_box`
 Initializing... 3D Objects loaded. Corner of box: `pick point`
 Specify length of box: 4
 Specify width of box or [Cube]: 2
 Specify height of box: 2
 Specify rotation angle of box about the Z axis or
 [Reference]: 0
10.2 Pyramid

1. Type AI_PYRAMID at the command prompt.
 Command: ai_pyramid
 Specify first corner point for base of pyramid: pick point
 Specify second corner point for base of pyramid: 4
 Specify third corner point for base of pyramid: 4
 Specify fourth corner point for base of pyramid or [Tetrahedron]: 4
 Specify apex point of tetrahedron or [Top]: .xy
 of pick (need Z): 4
10.3 Wedge

1. Type AI_WEDGE at the command prompt.

Command: ai_wedge
Specify corner point of wedge: pick point
Specify length of wedge: 4
Specify width of wedge: 2
Specify height of wedge: 2
Specify rotation angle of wedge about the Z axis: 0
10.4 Dome

1. Type AI_DOME at the command prompt.
 Command: ai_dome
 Specify center point of dome: pick point
 Specify radius of dome or [Diameter]: 3
 Enter number of longitudinal segments for surface of dome <16>: 20
 Enter number of latitudinal segments for surface of dome <8>: 10
10.5 Sphere

1. Type AI_SPHERE at the command prompt.

 Command: **ai_sphere**
 Specify center point of sphere: **pick point**
 Specify radius of sphere or [Diameter]: 3
 Enter number of longitudinal segments for surface of sphere <16>: 25
 Enter number of latitudinal segments for surface of sphere <16>: 25
10.6 Cone

1. Type AI_CONE at the command prompt.

Command: ai_cone
Specify center point for base of cone: pick point
Specify radius for base of cone or [Diameter]: 2
Specify radius for top of cone or [Diameter] <0>: 5
Specify height of cone: 3
Enter number of segments for surface of cone <16>:

enter
10.7 Torus

1. Type AL_TORUS at the command prompt.

 Command: ai_torus
 Specify center point of torus: pick point
 Specify radius of torus or [Diameter]: 6
 Specify radius of tube or [Diameter]: 1
 Enter number of segments around tube circumference <16>: enter
 Enter number of segments around torus circumference <16>: enter
10.8 Dish

1. Type AI_DISH at the command prompt.

 Command: **ai_dish**
 Specify center point of dish: **pick point**
 Specify radius of dish or [Diameter]: **3**
 Enter number of longitudinal segments for surface of dish
 <16>: **20**
 Enter number of latitudinal segments for surface of dish
 <8>: **15**
10.9 Mesh

1. Type `ai_mesh` at the command prompt.

Command: `ai_mesh`

Initializing... 3D Objects loaded. Specify first corner point of mesh: `1,1,1`

Specify second corner point of mesh: `4,1,1`

Specify third corner point of mesh: `4,4,2`

Specify fourth corner point of mesh: `1,4,1`

Enter mesh size in the M direction: `20`

Enter mesh size in the N direction: `10`
AutoCAD 3D – Chapter 11
Complex Surfaces
11.1 Revolved Surfaces

Regenerates a three-dimensional model with hidden lines

1. Type Revsurf at the command prompt.

Command: ```revsurf```
Current wire frame density: \text{SURFTAB1}=6 \text{ SURFTAB2}=6
Select object to revolve: ```pick path curve```
Select object that defines the axis of revolution: ```pick line```
Specify start angle <0>: ```enter```
Specify included angle ($+$=ccw, $-$=cw) <360>: ```enter```
11.2 Surftab Variables

Sets the number of tabulations for both directions to be generated for RULESURF and TABSURF. Also sets the mesh density in ROTATE3D the M direction for REVSURF and EDGESURF commands.

1. Type Surftab1 at the command prompt.
 Command: `surftab1`
 Enter new value for SURFTAB1 <6>: 30

2. Type Surftab2 at the command prompt.
 Command: `surftab2`
 Enter new value for SURFTAB2 <6>: 30

3. Type Revsurf at the command prompt.
 Command: `revsurf`
 Current wire frame density: SURFTAB1=30 SURFTAB2=30
 Select object to revolve: pick path curve
 Select object that defines the axis of revolution: pick line
 Specify start angle <0>: enter
 Specify included angle (+=ccw, -=cw) <360>: enter
11.3 Tabulated Surfaces

1. Type TABSURF at the command prompt.

Command: **tabsurf**

Select object for path curve: Select object for direction vector:
11.4 Ruled Surfaces

1. Type RULESURF at the command prompt.

 Command: rulesurf
 Current wire frame density: SURFTAB1=6
 Select first defining curve: P1
 Select second defining curve: P2
11.5 Edge Surfaces

Regenerates a three-dimensional model with hidden lines

1. Type EDGESURF at the command prompt.

 Command: `edgesurf`
 Current wire frame density: SURFTAB1=20 SURFTAB2=10
 Select object 1 for surface edge: P1
 Select object 2 for surface edge: P2
 Select object 3 for surface edge: P3
 Select object 4 for surface edge: P4
AutoCAD 3D – Chapter 12
Creating Solids
12.1 Solid Primitives

Solid primitives can easily be drawn from both the Draw pulldown menu and from Autodesk’s dashboard.

1. Choose **Draw, Modeling**, and one of the following solid primitives.

 ![Solid primitives icons](image)

 or

2. Choose the solid primitive from AutoCAD’s Dashboard.

 ![Solid primitives dashboard](image)
12.2 Polysolid Command

With the POLYSOLID command, you can convert an existing line, 2D polyline, arc, or circle to a solid with a rectangular profile. A polysolid can have curved segments, but the profile is always rectangular by default.

1. Open a drawing with a closed 2D polyline and display in a 3D view.
2. Choose Draw, Modeling, Polysolid.
 or
3. Type POLYSOLID at the command prompt.
 Command: polysolid
 Specify start point or [Object/Height/Width/Justify] <Object>: h
 Specify height <0'-4'">: 10'
 Specify start point or [Object/Height/Width/Justify] <Object>: o
 Select object: Pick polygon
12.3 Helix

Creates a 2D or 3D spiral.

1. Begin a new drawing.
2. Choose Draw, Helix.
 or
3. Type HELIX at the command prompt.

 Command: helix
 Number of turns = 3.0000 Twist=CCW
 Specify center point of base: pick point
 Specify base radius or [Diameter] <1.0000>: enter or drag and pick
 Specify top radius or [Diameter] <11.0776>: enter or drag and pick
 Specify helix height or [Axis endpoint/Turns/turn Height/tWist] <1.0000>: enter or drag and pick
12.4 Extrude

Creates unique solid primitives by extruding existing two-dimensional objects. You can extrude multiple objects with EXTRUDE.

1. Type EXTRUDE at the command prompt.

 Command: **extrude**
 Current wire frame density: ISOLINES=4
 Select objects: **pick objects**
 Select objects: **enter**
 Specify height of extrusion or [Direction/Path/Taper angle]: 2

Lines with a Thickness of 2”
Lines Extruded 2”
12.5 Extrude with Taper

1. Choose **Draw, Modeling, Extrude**.

 or

2. Type **EXTRUDE** at the command prompt.

 Command: `extrude`

 Current wire frame density: **ISOLINES=4**

 Select objects to extrude: **pick object to extrude**

 Select objects to extrude: **enter**

 Specify height of extrusion or [Direction/Path/Taper angle] <8.9509>: **T**

 Specify angle of taper for extrusion <0>: **15**

 Specify height of extrusion or [Direction/Path/Taper angle] <8.9509>: **4**
12.6 Extrude with Path

 or
2. Type EXTRUDE at the command prompt.

Command: extrude
Current wire frame density: ISOLINES=4
Select objects to extrude: 1 found
Select objects to extrude: pick circle (P1)
Specify height of extrusion or [Direction/Path/Taper angle] <4.0000>: \(p\)
Select extrusion path or [Taper angle]: pick P2

Circle Extruded Along a Path

Hidden Line Removal of Extruded Circle
12.7 Revolve Command

1. Open a drawing with 3D objects and display in a 3D view.
2. Choose Draw, Modeling, Revolve.
 Or
3. Type REVOLVE at the command prompt.

 Command: revolve

 Current wire frame density: ISOLINES=4

 Select objects: pick profile

 Select objects: enter

 Specify start point for axis of revolution or define axis by [Object/X (axis)/Y (axis)]: o

 Select an object: pick axis

 Specify angle of revolution <360>: enter
12.8 Sweep Command

1. Open a drawing with 2D objects to sweep and display in a 3D view.
2. Choose **Draw, Modeling, Sweep**.

or
3. Type SWEEP at the command prompt.

 Command: **sweep**

 Current wire frame density: ISOLINES=4

 Select objects to sweep: **pick arc**

 Select objects to sweep:

 Select sweep path or [Alignment/Base point/Scale/Twist]: **pick path**
12.9 Loft Command

1. Open a drawing with 2D objects to sweep and display in a 3D view.
2. Choose Draw, Modeling, Loft.
 or
3. Type LOFT at the command prompt.

Command: loft
Select cross-sections in lofting order: pick circles
Specify opposite corner: 5 found
Select cross-sections in lofting order:
Enter an option [Guides/Path/Cross-sections only] <Cross-sections only>: enter

Click OK.
AutoCAD 3D – Chapter 13
3D Edits
13.1 Convert to Solid

Converts polylines and circles with thickness to 3D solids. With the CONVTOSOLID command, you can convert the following objects into extruded 3D solids:

- Uniform-width wide polylines with thickness
- Closed, zero-width polylines with thickness
- Circles with thickness

Note You cannot use CONVTOSOLID with polylines that contain vertices with 0 width or that contain segments of variable width

1. Open a drawing with 2D polylines or circles with thicknesses and display in a 3D view.
2. Choose **Modify, 3D Operation, Convert to Solid**.
 or
3. Type CONVTOSOLID at the command prompt.

 Command: `convtosolid`

 Select objects: pick circle or polyline 1 found

 Select objects: press enter
13.2 Convert to Surface

Converts polylines and circles with thickness to surfaces.

1. Open a drawing with 2D polylines or circles with thicknesses and display in a 3D view.
2. Choose **Modify, 3D Operation, Convert to Surface**.
 or
3. Type CONVTSURFACE at the command prompt.

Command: `convtosurface`
Select objects: 1 found
Select objects:
13.3 3D Move

Displays the move grip tool in a 3D view and moves objects a specified distance.

1. Open a drawing with 3D objects and display in a 3D view.
2. Choose **Modify, 3D Operations, 3DMove.**
 or
3. Type 3DMOVE at the command prompt.

Command: **3Dmove**
Select objects: **pick object to move**
1 found
Select objects: enter
Specify base point or [Displacement] <Displacement>: D
Specify displacement <0.0000, 0.0000, 0.0000>: 0,0,2
13.4 3D Rotate

1. Open a drawing with 3D objects and display in a 3D view.

2. Choose **Modify, 3D Operations, 3D Rotate**.

 or

3. Type 3DROTATE at the command prompt.

 Command: 3DROTATE

 Current positive angle in UCS: ANGDIR=counterclockwise
 ANGBASE=0

 Select objects: **pick object and press enter**

 Specify base point: **pick point**

 Pick a rotation axis: **select X axis**

 Specify angle start point: **-90**
13.5 3DAlign

1. Open a drawing with 3D objects and display in a 3D view.
2. Choose **Modify, 3D Operations, 3DAlign**.
 or
3. Type 3DALIGN at the command prompt.

 Command: _3dalign

 Select objects: **pick and press enter**

 Specify source plane and orientation ...

 Specify base point or [Copy]:

 Specify second point or [Continue] <C>:

 Specify third point or [Continue] <C>:

 Specify destination plane and orientation ...

 Specify first destination point:

 Specify second destination point or [eXit] <X>:

 Specify third destination point or [eXit] <X>:
13.6 3D Mirror

1. Open a drawing with 3D objects and display in a 3D view.
2. Choose Modify, 3D Operations, 3DMirror.
 or
3. Type MIRROR3D at the command prompt.
 Command: mirror3D
 Select objects: pick the circle
 Select objects: enter
 Specify first point of mirror plane (3 points) or
 [Object/Last/Zaxis/View/XY/YZ/ZX/3points] <3points>: P1
 Specify second point on mirror plane: P2
 Specify third point on mirror plane: P3
 Delete source objects? [Yes/No] <N>: enter

Circle Mirrored around 3 Points
13.7 3D Rectangular Array

1. Open a drawing with 3D objects and display in a 3D view.
2. Choose **Modify, 3D Operations, 3DArray**.

 or
3. Type 3DARRAY at the command prompt.

Command: 3darray

Select objects: pick object and press enter

Enter the type of array [Rectangular/Polar] <R>: R

Enter the number of rows (---) <1>: 3

Enter the number of columns (|||) <1>: 4

Enter the number of levels (...) <1>: 2

Specify the distance between rows (---): 5

Specify the distance between columns (|||): 4

Specify the distance between levels (...) : 8
13.8 3D Polar Array

1. Open a drawing with 3D objects and display in a 3D view.
2. Choose **Modify, 3D Operations, 3DArray**.

 or

3. Type 3DARRAY at the command prompt.

 Command: **3darray**

 Select objects: **pick cube**

 Select objects: **enter**

 Enter the type of array [Rectangular/Polar] <R>: **P**

 Enter the number of items in the array: **5**

 Specify the angle to fill (+=ccw, -=cw) <360>: **enter**

 Rotate arrayed objects? [Yes/No] <Y>: **enter**

 Specify center point of array: **mid of axis line**

 Specify second point on axis of rotation: **pick**

Arrayed Objects Around a Line
Arrayed Objects in Plan View
13.9 Extract Edges

1. Open a drawing with 3D objects and display in a 3D view.
2. Choose **Modify, 3D Operations, Extract Edges**.
 or
3. Type XEDGES at the command prompt.

 Command: __xedges

 Select objects: **pick object**

 Select objects: **enter**
13.10 Facetres

Adjusts the smoothness of shaded and rendered objects and objects with hidden lines removed. Valid values are from 0.01 to 10.0.

1. Open a drawing with 3D objects and display in a 3D view.
2. Type FACETRES at the command prompt.
 Command: FACETRES
 Enter new value for FACETRES <0.5000>: 10

Facetres=.1
Facetres=10
13.11 Isolines

1. Open a drawing with 3D objects and display in a 3D view.
2. Type ISOLINES at the command prompt.
 Command: isolines
 Enter new value for ISOLINES <4>: 20
 Command: regen
 REGEN Regenerating model.
AutoCAD 3D – Chapter 14
Solid Composites
14.1 Union

1. Open a drawing with 3D objects and display in a 3D view.
2. Choose **Modify, Solids Editing, Union.**
 or
3. Type UNION at the command prompt.

 Command: `union`
 Select objects: `pick objects to union`
 Select objects: `enter`
14.2 Subtract

1. Open a drawing with 3D objects and display in a 3D view.
2. Choose **Modify, Solids Editing, Subtract.**
 or
3. Type **SUBTRACT** at the command prompt.

 Command: **subtract**

 SUBTRACT Select solids and regions to subtract from...
 Select objects: **pick the box**
 Select objects: (press enter)

 Select solids and regions to subtract... Select objects: pick the cylinder Select objects: enter

Objects Subtracted from Box
14.3 Intersect

1. Choose **Modify, Solids Editing, Intersect**

2. Type INTERSECT at the command prompt.

 Command: **intersect**

 Select objects: **pick objects**

 Select objects: **enter**

Intersection of Cylinder and Box
14.4 Thicken

Creates a 3D solid by thickening a surface.

1. Open a drawing with 3D surface and display in a 3D view.
2. Choose **Modify, 3D Operation, Thicken**.
 or
3. Type THICKEN at the command prompt.
 Command: **thicken**
 Select surfaces to thicken: 1 found
 Select surfaces to thicken:
 Specify thickness <0.0000>: 1

![Image of a 3D surface before and after thickening]
14.5 Interference Checking

Highlights 3D solids that overlap.

1. Open a drawing with 3D objects that overlap and display in a 3D view.
2. Choose Modify, 3D Operations, Interference Checking.
 or
3. Type INTERFERE at the command prompt.
 Command: interfere
 Select first set of objects or [Nested selection/Settings]: pick objects and press enter.
 Select second set of objects or [Nested selection/check first set] <check>: pick rectangle and press enter
AutoCAD 3D Tutorial

The following dialog box allows you to change the zoom and display of the drawing to better see the interfering objects.

You can also choose to retain the interference objects by turning the check box off for “Delete interference objects created on Close”
AutoCAD 3D – Chapter 15
Modifying Solid Faces
15.1 Extrude Face

1. Choose **Modify, Solid Editing, Extrude face**.

 NOTE: Must be a solid to extrude the face.

2. Choose a face to extrude. If you choose more than one face, hold the SHIFT key to deselect unwanted faces.

3. **Press ENTER**.

4. Specify height of extrusion or [Path]: .25

5. Specify angle of taper for extrusion <0>: 45
15.2 Taper Face

1. Choose Modify, Solid Editing, Taper face.
2. Choose a face(s) to taper. If you choose more than one face, hold the SHIFT key to deselect unwanted faces.
3. Press ENTER.
4. Specify the base point: pick the back left corner
5. Specify another point along the axis of tapering: pick point
6. Specify the taper angle: 45

Solid validation started. Solid validation completed.

Before Taper

After Taper
15.3 Delete Face

1. Choose **Modify, Solid Editing, Delete face**.
2. Choose a face to delete. If you choose more than one face, hold the SHIFT key to deselect unwanted faces.
3. **Press ENTER**.
4. Choose the face to delete.
15.4 Copy Face

1. Choose **Modify, Solid Editing, Copy face**.
2. Choose a face to copy. If you choose more than one face, hold the SHIFT key to deselect unwanted faces.
3. **Press ENTER**.
4. Pick the solid face to copy.
5. Pick a new location.
15.5 Color Face

1. Choose **Modify, Solid Editing, Color face.**
2. Choose a face to change the color of. If you choose more than one face, hold the SHIFT key to deselect unwanted faces.
3. **Press ENTER.**
4. Choose a color to change the face to.
15.6 Imprint

Imprints an object on the selected solid. The object to be imprinted must intersect one or more faces on the selected solid in order for imprinting to be successful. Imprinting is limited to the following objects: arcs, circles, lines, 2D and 3D polylines, ellipses, splines, regions, bodies, and 3D solids.

1. Extrude objects (i.e. walls) to create a solid object.
2. Change the UCS and draw an object on a face of one of the walls.
3. Choose Modify, Solid Editing, Imprint.
4. Select a 3D solid: pick solid
5. Select an object to imprint: pick circle
6. Delete the source object <N>: Y
15.7 Extrude Imprint

1. Choose **Modify, Solid Editing, Extrude Faces**.
2. Select the circle that was imprinted in 15.6.
3. Deselect any unwanted faces.
4. **Type -8** as the height of extrusion (or desired height).
15.9 Shell

You can create a shell or a hollow thin wall with a specified thickness from your 3D solid object. AutoCAD creates new faces by offsetting existing ones inside or outside their original positions. AutoCAD treats continuously tangent faces as single faces when offsetting.

1. Choose **Modify, Solid Editing, Shell**.
2. Select a 3D solid: **pick solid**
 Remove faces or [Undo/Add/ALL]: **enter**
 Enter the shell offset distance: **.5**
AutoCAD 3D – Chapter 16
Editing Solids
16.1 Select and Manipulate Subobjects

You can select one subobject, or create a selection set of more than one subobject on any number of solids. Your selection set can also include more than one type of subobject.

1. Open a drawing with 3D solid object and display in a 3D view.
2. Hold the CTRL key and select the solid.
3. While holding CTRL, toggle to other subobjects within the solid.
4. Once selected, click and drag to modify the solid.
16.2 Use Grip Tools

Grip tools are icons that you use in a 3D view to easily constrain the movement or rotation of a selection set of objects to an axis or a plane.

There are two types of grip tools:
 - Move (3DMOVE command)
 - Rotate (3DROTATE command)

1. Open a drawing with 3D solid object and display in a 3D view.
2. Hold the CTRL key and select the solid.
3. While holding CTRL, toggle to other subobjects within the solid.
4. Once selected, click and drag to modify the solid using the grip tool.
16.3 Press or Pull Bounded Areas

You can press or pull bounded areas by pressing and holding CTRL + ALT, or by clicking the Presspull button on the dashboard and then picking the bounded area. The area must be bounded by coplanar lines or edges.

1. Open a drawing with a 3D object and imprinted object and display in a 3D view.
2. Hold the **CTRL** and **ALT** keys and select the imprinted object or solid face to manipulate it.
3. Click and drag to a new location.
17.1 Sectionplane Command

The SECTIONPLANE command creates a section object that exposes the interior details of a model created with 3D objects.

Once you create a section object, you can move and manipulate it to fine-tune the sectional view you want.

1. Open a drawing with 3D solid objects and display in a plan and 3D view.
2. Choose **Draw, Modeling, Sectionplane**.
 or
3. Type **SECTIONPLANE** at the command prompt.

 Command: `sectionplane`

 Select face or any point to locate section line or [Draw section/Orthographic]: **O**

 Align section to: [Front/bAck/Top/Bottom/Left/Right] <Front>: **enter**
17.2 Manipulate Section Using Grips

1. Click on a section line created using the SECTIONPLANE command.
2. Click on one of the grips to manipulate the section.

Base grip - moves the entire section object

Directional arrow grip – changes the cutting plane direction

Segment end grip - rotates the section object around the base grip

Menu grip - moves between the three states
17.3 Section Shortcut Commands

1. Right-click on a section line to see the following section options.

2. Click the various section options.
17.4 Generate 2D and 3D Sections

1. **Right-click** on a section line.
2. Click **Generate 2D/3D section**…
3. From the following dialog box, click the down arrow to see all of the section options.

![Generate Section/Elevation dialog box]

4. Choose **2D Section** and **Create**.
5. Click an insertion point and scale for the 2D section block.
17.5 Section Command

Uses the intersection of a plane and solids to create a region

1. Open a drawing with 3D objects and display in a 3D view.
2. Type SECTION at the command prompt.

Command: section

Select objects: pick solid and press enter

Specify first point on Section plane by
[Object/Zaxis/View/XY/YZ/ZX/3points] <3points>: XY

Specify a point on the XY-plane <0,0,0>: MID of
17.6 Slice Command

1. Open a drawing with 3D objects and display in a 3D view.
2. Choose **Modify, 3D Operation, Slice.**
 or
3. Type SLICE at the command prompt.

 Command: **slice**
 Select objects to slice: 1 found
 Specify start point of slicing plane or [planar Object/Surface/Zaxis/View/XY/YZ/ZX/3points] <3points>: **YZ**
 Specify a point on the YZ-plane <0,0,0>: **MID of**
 Specify a point on desired side or [keep Both sides] <Both>:

![Diagram showing 3D objects and slicing plane](image)
17.7 Solview

1. Choose File, New...

2. Choose “Use a Template” from the startup dialog.

3. Double-click Ansi_c.dwt as the template file to start from. This creates a new drawing with a border and one floating Model Space.

4. Double-click MODEL from the Status Bar and note the change to Paper Space.

5. Double-click PAPER from the Status Bar to toggle back to Model Space.
6. Choose Insert, Block...

7. Choose the drawing called 3DBOTTLE.DWG to insert.

8. Insert the block anywhere in the Model Space view at a scale of 1 and rotation 0.
9. Double-click MODEL at the Status Bar and resize the Model Space view port in Paper Space.

10. Double-click PAPER at the Status Bar to return to Model Space.

11. Type ZOOM, 1XP at the command prompt.
17.8 Create an Orthogonal View

 or

2. Type SOLVIEW at the command prompt.

Command: solview

Ucs/Ortho/Auxiliary/Section/<eXit>: O
Pick side of viewport to project: P1

View center: P2

Clip first corner: P3

Clip other corner: P4

View name: front
17.9 Soldraw

Generates profiles and sections in viewports created with SOLVIEW. SOLDRAW can only prepare viewports that have been created with SOLVIEW.

1. Choose **Draw, Modeling, Setup, Drawing.**

 or

2. Type SOLDRAW at the command prompt

 Command: soldraw

 Select viewports to draw: P1

 Select objects: 1 found

 Select objects: **enter**

 3 solids selected.

NOTE: If your object was an inserted block, you need to first explode it so it becomes a solid.
17.10 Create 3D View UCS

1. Click MSPACE and the plan view of the 3D Bottle.

2. Choose View, 3D Viewport, SW Isometric...

3. Type UCS at the command prompt.
 Command: ucs
 Origin/ZAxis/3point/OBject/View/X/Y/Z/
 Prev/Restore/Save/Del/?/<World>: view

 This sets the current UCS parallel to the screen. We now need to save this ucs.

4. Type UCS at the command prompt.
 Command: ucs, Origin/ZAxis/3point/OBject/View/X/Y/Z/
 Prev/Restore/Save/Del/?/<World>: save
 ?/Desired UCS name: 3dview

5. Click PSPACE at the command prompt.

6. Choose Draw, Solids, Setup, View
 Command: solview Ucs/Ortho/Auxiliary/Section/<eXit>: u
 Named/World/?/<Current>: n

 Name of UCS to restore: 3dview Enter view scale<1.0000>: enter
 View center: pick
 View center: pick
3D Model View
17.11 Solprof

1. Double-click MODEL to return to Model Space.
2. Choose **Draw, Modeling, Setup, Profile**.
 or
3. Type SOLPROF at the command prompt.
 Command: **solprof**
 Select objects: **pick solids**
 Select objects: **enter**
 Display hidden profile lines on separate layer? <Y>: **enter**
 Project profile lines onto a plane? <Y>: **enter**
 Delete tangential edges? <Y>: **enter**
 3 solids selected.
AutoCAD 3D – Chapter 18
Introduction to Rendering
18.1 Render Command

Creates a photorealistic or realistically shaded image of a three-dimensional wireframe or solid model.

1. Open an AutoCAD drawing with 3D objects to render.

2. Choose View, Render, Render...

 or

3. Type RENDER at the command prompt.

 Command: render

The following render window is the result of default rendering
18.2 Render Destination

You are able to determine the output site that the renderer uses to display the rendered image. Two options are the render window and viewport.

1. Open an AutoCAD drawing with 3D objects to render.

2. Choose View, Render, Advanced Render Settings...

 or

3. Type RPREF at the command prompt.

 Command: rpref

4. Click the dropdown option for destination and choose Viewport.

 ![Screenshot of Render Preferences dialog box]

5. Close the render preferences and render your objects to the viewport.
18.3 Render Quality

1. Open an AutoCAD drawing with 3D objects to render.

2. Choose View, Render, Advanced Render Settings...

 or

3. Type RPREF at the command prompt.

 Command: rpref

4. Click the dropdown option for the render quality and choose Presentation.

5. Close the render preferences and render your view.

 Note: Depending on the objects, lights, materials, etc. in your model, rendering in presentation mode might take a long time.
18.4 Render Selection

Controls the parts of the model that gets processed during rendering. The render procedure has three settings: View, Crop, and Selected.

1. Open an AutoCAD drawing with 3D objects to render.
2. Choose View, Render, Advanced Render Settings...

 or

3. Type RPREF at the command prompt.

 Command: rpref

4. Click the dropdown option for Procedure and choose Selected.

5. Close the render preferences and render your selected objects.
This result is a selected object in the drawing that is rendered.
18.5 Render Cropped Window

1. Open an AutoCAD drawing with 3D objects to render.

2. Choose View, Render, Advanced Render Settings...

 or

3. Type RPREF at the command prompt.

 Command: rpref

4. Click the dropdown option for Procedure and choose Crop.

5. Close the render preferences and render your objects.
The result is a cropped portion of the drawing that is rendered.
18.6 Render to File

1. Open an AutoCAD drawing with 3D objects to render.

2. Choose View, Render, Advanced Render Settings...

 or

3. Type RPREF at the command prompt.

 Command: rpref

4. Click the option for Output file name.

5. Choose a location, format, and file name for your rendered objects.
6. Adjust the image quality and click OK.

7. Close the render preferences and render your objects.

The result is a rendered image to a file that you can copy, print, or manipulate in any imaging software application.
18.7 Turn Off Render to File

1. Open an AutoCAD drawing with 3D objects to render.

2. Choose View, Render, Advanced Render Settings...

 or

3. Type RPREF at the command prompt.

 Command: rpref

4. Click the small disk beside the title for “Render Content”. You will notice that the Output file name option will be grayed out.
AutoCAD 3D – Chapter 19
Materials
19.1 Adding Material to a Drawing

1. Open an AutoCAD drawing with 3D objects to add materials to.

2. Choose View, Render, Materials...
 or

3. Type MATERIALS at the command prompt.
 Command: materials

4. Click the Create New Material Button under the Available Materials in Drawing section.

5. Type a name and description for the new material.

6. Click the Select... button under the Diffuse Map section of the Material Editor.
7. Navigate to a location where material textures are located, select a material image to add, and click Open.

The material will be added to your drawing in the current material slot.
19.2 Applying Materials by Attach

1. Choose View, Render, Materials...
 or
2. Type MATERIALS at the command prompt.
 Command: materials
3. Click the Apply Material to Objects button under the Available Materials in Drawing section.
4. Use the pick box to select an object to apply the material to.
5. Press **enter**.
6. Type `RENDER` at the command prompt to see the new material applied in the drawing.
19.3 Adjust Material Scale

Materials such as hard wood might not map properly to objects at different scales. The follow section shows how to adjust the scale of materials.

1. Choose View, Render, Materials...
 or
2. Type MATERIALS at the command prompt.
 Command: materials
3. Click the Adjust Button under the Diffuse Map section of the Material Editor.
4. Click the Adjust Button under the Diffuse Map section of the Material Editor.

5. Click Fit to object under the Bitmap Scale option and click Close.

6. Render the drawing to see the newly mapped material.
19.4 Applying Materials by Layer

You can attach a material to an entire layer using the Material Attach command.

1. Create a new material.
2. Type MATERIALATTACH at the command prompt.

Command: materialattach

3. Click and drag the material onto the desired layer.

4. Adjust the material to the object and render to see the results.
19.5 Applying Materials from Tool Palette

1. Click **Tools, Palettes, Tool Palettes**.
 Note: If materials are not shown on the Tool Palette, load
 them from the materials section on the Dashboard.

2. Click and drag a material on to an object.
19.6 New Material

1. Choose **View, Render, Materials...**

 or

2. Type MATERIALS at the command prompt.
 Command: `materials`

3. Click the **Create New Material** button and create a material called **Glass** for the bottle.

4. From the Template dropdown, click **Glass - Clear**.

5. Click the **Checkered Underlay** option to see the glass properties.

6. Adjust other glass properties as desired and apply the material to the bottle.
19.7 Opacity Materials

1. Choose View, Render, Materials...
 or
2. Type MATERIALS at the command prompt.
 Command: materials
3. Click the Create New Material button and create a material called Opacity Material.
4. Click Select...beside Opacity and choose the opacity material.
5. Apply the material to an object and render.
19.8 Bump Map Materials

1. Choose View, Render, Materials...
 or
2. Type MATERIALS at the command prompt.
 Command: materials
3. Click the Create New Material button and create a material called Bump Material.
4. Click Select...beside Bump Map and choose the opacity material.
5. Apply the material to an object and render.
19.9 Removing Materials

1. Open an AutoCAD drawing with 3D objects to render.

2. Choose View, Render, Advanced Render Settings...
 or

3. Type RPREF at the command prompt.

 Command: rpref

5. Click the small disk beside the title for “Render Content”. You will notice that the Output file name option will be grayed out.
AutoCAD 3D – Chapter 20
Lights
20.1 Point Light

A point light radiates light in all directions from its location.

1. Open a drawing with 3D objects and display in a 3D view.
2. Choose View, Render, Light, New Point Light.
 or
3. Type POINTLIGHT at the command prompt.
 Command: pointlight
4. Click Yes to the following viewport lighting prompt:
 Specify source location <0,0,0>: .XY
 of pick center of bottle
 (need Z): 10
 Enter an option to change
 [Name/Intensity/Status/shadow/Attenuation/Color/eXit]
 <eXit>: enter
5. Render the current viewport.
View rendered using a point light
20.2 Spot Light

A spotlight emits a directional cone of light.

1. Open a drawing with 3D objects and display in a 3D view.
2. Choose View, Render, Light, New Spot Light.
 or
3. Type SPOTLIGHT at the command prompt.

 Command: spotlight

 Specify source location <0,0,0>: P1

 Specify target location <0,0,-10>: P2

 Enter an option to change
 [Name/Intensity/Status/Hotspot/Falloff/shadow/Attenuation/Color/eXit] <eXit>: enter

4. Render the current viewport.
View rendered using a point and spotlight
20.3 Light List

The lightlist command allows you to modify lights in a drawing. This includes turning lights off, deleting lights, or changing the properties of one or more lights.

1. Open a drawing with lights.
2. Choose View, Render, Light, Lightlist.
 or
3. Type LIGHTLIST at the command prompt.
 Command: lightlist

![Lights in Model:](image)

- Pointlight1
- Spotlight2

Click a light on the list to select it in the model. Use CTRL for multiple selection.
Note: Distant lights and the sun do not appear as interface objects in the model.
4. Double-click one of the lights in the drawing to modify its properties.
20.4 Distant Light

A distant light emits uniform parallel light rays in one direction only. You specify a FROM point and a TO point anywhere in the viewport to define the direction of the light. There is no light glyph to represent a distant light in your drawing.

1. Open a drawing with 3D objects and display in a 3D view.
2. Choose View, Render, Light, New Distant Light.
 or
3. Type DISTANTLIGHT at the command prompt.
 Command: distantlight
 Specify light direction FROM <0,0,0> or [Vector]: .XY
 of MID P1
 of (need Z): 5
 Specify light direction TO <1,1,1>: .XY
 of MID P2
 of (need Z): 5
 Enter an option to change
 [Name/Intensity/Status/shadow/Color/eXit] <eXit>: enter
AutoCAD 3D Tutorial

View rendered using a point and spotlight
20.5 Geographic Locations

Specifies the latitude and longitude of a location for the sunlight.

1. Open a drawing with lights.
2. Choose View, Render, Light, Geographic Location.
 or
3. Type GEOGRAPHICLOCATION at the command prompt.
 Command: geographiclocation
4. Pick the desired geographic location for your model and click OK.
20.6 Sun Properties

1. Open a drawing with a geographic location identified.
2. Choose **View, Render, Light, Sun Properties**.
 or
3. Type SUNPROPERTIES at the command prompt.
 Command: **sunproperties**
4. From the Sun Properties dialog box, click the Status dropdown and click **ON**.
5. Change the date to **April 15, 2007** (income tax due date.)
6. Change other properties as desired and render the model.
US Capitol Building rendered on April 15

US Capitol Building rendered on October 15
AutoCAD 3D – Chapter 21
Advanced Render Commands
21.1 Sampling

Controls how the renderer performs sampling.

1. Open a drawing with 3D objects and display in a 3D view.
2. Choose View, Render, Advanced Render Settings...
 or
3. Type RPREF at the command prompt.

 Command: \texttt{rpref}

<table>
<thead>
<tr>
<th>Sampling</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Min samples</td>
<td>1</td>
</tr>
<tr>
<td>Max samples</td>
<td>16</td>
</tr>
<tr>
<td>Filter type</td>
<td>Mitchell</td>
</tr>
<tr>
<td>Filter width</td>
<td>4.0000</td>
</tr>
<tr>
<td>Filter height</td>
<td>4.0000</td>
</tr>
<tr>
<td>Contrast color</td>
<td>0.0500, 0.0500, 0.0500, 0.0500</td>
</tr>
<tr>
<td>Contrast red</td>
<td>0.0500</td>
</tr>
<tr>
<td>Contrast blue</td>
<td>0.0500</td>
</tr>
<tr>
<td>Contrast green</td>
<td>0.0500</td>
</tr>
<tr>
<td>Contrast alpha</td>
<td>0.0500</td>
</tr>
</tbody>
</table>
21.2 Shadows

Contains settings that affect how shadows appear in the rendered image.

1. Open a drawing with 3D objects and display in a 3D view.
2. Choose View, Render, Advanced Render Settings...
 or
3. Type RPREF at the command prompt.

Command: `rpref`

<table>
<thead>
<tr>
<th>Shadows</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Mode</td>
<td>Simple</td>
</tr>
<tr>
<td>Shadow map</td>
<td>Off</td>
</tr>
</tbody>
</table>
21.3 Ray Tracing

Contains settings that affect the shading of a rendered image.

1. Open a drawing with 3D objects and display in a 3D view.
2. Choose View, Render, Advanced Render Settings...
 or
3. Type RPREF at the command prompt.

Command: rpref

<table>
<thead>
<tr>
<th>Ray Tracing</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Max depth</td>
<td>7</td>
</tr>
<tr>
<td>Max reflections</td>
<td>7</td>
</tr>
<tr>
<td>Max refractions</td>
<td>7</td>
</tr>
</tbody>
</table>
21.4 Illumination

Affects how your scene is illuminated.

1. Open a drawing with 3D objects and display in a 3D view.
2. Choose View, Render, Advanced Render Settings...
or
3. Type RPREF at the command prompt.

Command: `rpref`
21.5 Diagnostic

Helps you understand why the renderer is behaving in a certain way.

1. Open a drawing with 3D objects and display in a 3D view.
2. Choose View, Render, Advanced Render Settings...
 or
3. Type RPREF at the command prompt.
 Command: `rpref`

```
<table>
<thead>
<tr>
<th>Grid</th>
<th>Off</th>
</tr>
</thead>
<tbody>
<tr>
<td>Grid size</td>
<td>10.0000</td>
</tr>
<tr>
<td>Photon</td>
<td>Off</td>
</tr>
<tr>
<td>Samples</td>
<td>Off</td>
</tr>
<tr>
<td>BSP</td>
<td>Off</td>
</tr>
</tbody>
</table>
```
21.6 Processing

1. Open a drawing with 3D objects and display in a 3D view.
2. Choose View, Render, Advanced Render Settings...
 or
3. Type RPREF at the command prompt.
 Command: `rpref`

<table>
<thead>
<tr>
<th>Processing</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Tile size</td>
<td>32</td>
</tr>
<tr>
<td>Tile order</td>
<td>Hilbert</td>
</tr>
<tr>
<td>Memory limit</td>
<td>1048</td>
</tr>
</tbody>
</table>
AutoCAD 3D – Chapter 22
Render Environments and Background
22.1 Render Environment

You can use environmental features to set up atmospheric effects or background images.

1. Open a drawing with 3D objects and display in a 3D view.
2. Choose View, Render, Advanced Render Environment...
 or
3. Type RENDERENVIRONMENT at the command prompt.
 Command: renderenvironment
22.2 Solid Background

A background is a backdrop that displays behind your model. Backgrounds can be a single color, a multi-color gradient, or a bitmap image.

1. Open a drawing with 3D objects and display in a 3D view.
2. Choose View, Named Views.

 or

3. Type VIEW at the command prompt.
 Command: view

4. Choose New…

5. Type a name for your new view.

6. Click the check box beside background.

7. Choose a color for your solid background.
22.3 Gradient Environment

1. Open a drawing with 3D objects and display in a 3D view.
2. Choose **View, Named Views**.

 or
3. Type VIEW at the command prompt.

 Command: `view`
4. Choose **New**...
5. Type a name for your new view.
6. Click the check box beside background.
7. Choose the dropdown option for background type and choose gradient.
8. Choose colors for your gradient background.
22.4 Image Background

1. Open a drawing with 3D objects and display in a 3D view.
2. Choose **View, Named Views**.
 or
3. Type VIEW at the command prompt.
 Command: `view`
4. Choose **New**…
5. Type a name for your new view.
6. Click the check box beside background.
7. Choose the dropdown option for background type and choose **image**.
8. Click the Browse button and choose an image for your background.