
Lecture 4

Finance Project

Somesh Jha

1



Low-Level Design document

�We will call the Low-Level Design document
LLD from now on.

� Be very detailed. Programming should be a
very small step after this document is over.

� State the language upfront. We will be
using JAVA and hence Object-Oriented
Programming.

�Mention each object with its purpose and
description of the constructors and the
methods which can be called from outside
(these will be the public methods in
JAVA).

2



LLD (Contd)

�Order your objects by uses relation. For
example, if O1 is used by object O2 describe
O1 �rst. In case of recursion, pick an order
arbitrarily.

� Indicate if a class extends some other class
or if a class is going to be abstract. Also,
give a short rationale why did you choose to
make a certain class abstract.

� Revisit the LLD while/after doing th
implementation. You will be straying from
the design a little bit. We will use LLD and
additional information to understand and
test your code.

3



Logistics

�Due Date: Feb 12,1999.

�Remember more detail the better.
This will make your job while
implementation very easy.

�Also try to distribute work so that di�erent
people work on descriptions of di�erent
objects.

�Mention clearly who is responsible for which
object. The person describing the design of
an object will also implement it. In the
implementation the author of each object
should be mentioned very clearly in the
header �les.

4



Logistics (Contd)

� There should be one system integrator who
will take descriptions/implementation of the
objects and see whether they all �t together.
The main loop of the program will be put
together by the system integrator.

�Mention the roles of the team members in
the document.

�After a team member implements an object,
another team member should review the
code. You will be surprised how many silly
errors you will catch during review. Mention
the reviewer in the header �le with the
object (along with the author of-course).

5



Implementation

�Due date: March 1, 1999.

�Make sure you have clear instructions
describing how to use the system.

� State limiting assumptions you made while
implementing.

� Please give a phone number of a person we
can call in case we have di�culty running
your system. This person should preferably
be the system intergrator because he/she
has the overall idea about your system.

6



MortgagePool object

�ObjectName: MortgagePool object.

� Extends: Object.
� Implements: None.

�Uses: None.
�Constructor
A single constructor which takes various
parameters of the mortgage pool. Please see
Lecture 2.
Assumption: I am going to assume a
homogeneous mortgage pool.

7



MortgagePool object (Contd)

�Method:
double[] cashFlows(double SMMS[])

Takes as parameter array of SMMs for
various times and returns array of cash-
ows
for each time up=�-to the lifetime of the
mortgage. Assume that array of SMMs has
same size as the lifetime of the mortgage
pool.

�Method:
double next-cash-flow(double SMM)

This allows the object to be used in an
iterative mode. Whenever, this method is
called the cash-
ow in the current time
period is returned and the current time
period in the mortgage pool is incremented.

8



The parameter SMM determines the
prepayment for this time period.

9



BondObject object

�Name: BondObject.

� Extends: Object.
� Implements: None.

�Uses: None.
�Constructor
Name of the �le/database (with the bond
data) is passed to the constructor. We will
assume that the bond data is in a �le with
all the required quantities.

10



BondObject object (Contd)

�Methods:
double yield(t,T)

Yield at time t of a zero-coupon bond
maturing at time T .
double price(t,T)

Price at time t of a zero-coupon bond
maturing at time T .
double volatility(t,T)

Volatility at time t of a zero-coupon bond
maturing at time T .

� Note: This object will be used in pricing
MBS with deterministic cash-
ows. Please
see Lecture 3 for a closed form expression.

11



NormalRandom object

�Name: NormalRandom.

� Extends: None.
�Uses: java.util.Random.
�Constructor:
Take the mean and variance as parameters
and record it internally. We will generate
two numbers with Normal distribution with
mean m and variance v.

12



NormalRandom object (Contd)

�Method:
double[] nextRandom()

Generate two random numbers with
standard normal distribution. Method we
will follow is due to Box-Muller-Marsaglia.
Please see next slide for a description of the
method. Before returning the random
numbers apply the appropriate transform to
match the mean and the variance given in
the constructor. Using the following
transformation

(x +m)
p
v

13



Box-Muller-Marsaglia method

.

� This algorithm is also called the polar
method.

� Step 1
Generate two random variables U1 and U2
(use the method nextDouble) in the class
java.util.Random. Transform these
variables according to the equations given
below:

V1 = 2U1 � 1
V2 = 2U2 � 1

14



Box-Muller-Marsagalia (Contd)

� Step 2
Compute S according to the equation given
below:

V 2
1 + V 2

2

� Step 3
If S � 1, go to step 1.

� Step 4
Return X1 and X2 given by the equations:

X1 = V1

vuut�2 lnS
S

X2 = V2

vuut�2 lnS
S

� Note: Steps 1 through 3 are executed 1.27
times on the average with standard
deviation of 0.587. So we are not returning
to Step 1 too many times.

15



InterestRate

�Name: InterestRate.

� Extends: None.
� Implements: None.

�Uses: NormalRandom.
�Constructor
We will use the Cox-Ingersoll-Ross model.
Constructor will take all the parameters as
arguments. Please see the SDE given below:

dr = �(�� r)dt+ �
p
rdW

The parameters �, �, �, and the initial
short rate r0 are passed to the constructor.
Assumption: The model has already been
calibrated.

16



InterestRate object (Contd)

�Method
void instantiate(double N,double

T)

Parameter T is the time horizon. N is the
number of discrete time steps we will divide
the time interval [0,T] into.
Assumption: We assume that T is in
months and N has granularity of at-least a
month.

�Method:
double[] nextPath()

Generates a random path where the t-th
element in the array is the short rate at the
t-th time. Let h be the step size given by

17



the following expression:

T

N
Generate random path according to the
following recurrence equation:

r(i+ 1) = �(�� r(i))h+ �
s
r(i)N(0; h)

where r(i) is the short rate at the discrete
time step i and N(0; h) is a random number
with normal distribution (mean 0 and
variance h). Use method in object
NormalRandom is used to generate this
number.

18



PrePayment object

�Name: PrePayment.

� Extends: None.
� Implements: None.

�Uses: None.
�Constructor
Pass a 
ag indication which option of
prepayment function is going to be used (see
Lecture 3 for explanation of the options).
For option A pass a vector of PSAs and for
option B pass the various parameters
�1; �2; �3.

19



PrePayment (Contd)

�Method: double[] smmVector(int T)

Use only with option A. Returns the vector
of SMMs upto time horizon T .

�Method: double smmRandom(double

pi,double rf7, double

burnout,double season)

Gives the random SMM given the required
parameters. Please see Lecture 3 for the
explanation. Need a random number with
Poisson Distribution (Haven't described

it here).

20



PassThrough

�Name: PassThrough.

� Extends: None.
� Implements: None.

�Uses: MortgagePool, InterestRate,
BondObject, and PrePayment.

�Constructor
Pass an object of type MortgagePool,
InterestRate, Prepayment, BondObject,
and time horizon to the constructor.
MortgagePool is the underlying mortgage
pool for the pass-through security.

21



PassThrough (Contd)

�Method
double priceDeterministic()

If the Prepayment generates deterministic
SMMS, use the closed form expression given
in Lecture 3.

�Method
double price()

Determine if the prepayment model is
deterministic or random. If prepayment
model is deterministic call method
priceDeterministic(). If prepayment
model is random (option B) use monte-carlo
simulation. Generate a covariate based on
the general technique described in Lecture
3. Price using monte-carlo simulation. Use

22



method nextPath() in the object of type
InterestRate.

23



CMOobject

�Name: CMOobject.

� Extends: None.
�Uses: MortgagePool, InterestRate,
BondObject, PrePayment.

� Implements: None.

�Constructor
Pass an object of type MortgagePool,
InterestRate, BondObject, Prepayment
and the time horizon to the constructor.
MortgagePool is the underlying mortgage
pool for the pass-through security. Also pass
the number of tranches and par-value of
each tranch to the constructor.

�Method

24



double[] priceDeterministic()

If the PrepaymentObject generates
deterministic SMMS, use the closed form
expression given in Lecture 3. Returns price
of each tranch.

�Method
double[] price()

Determine if the prepayment model is
deterministic or random. If prepayment
model is deterministic call method
priceDeterministic. If prepayment
model is random (option B) use monte-carlo
simulation. Generate a covariate based on
the general technique described in Lecture
3. Price using monte-carlo simulation.
Report price of each tranch.

25



StrippedMBS

�Name: StrippedMBS.

� Extends: None.
�Uses: InterestRate, MortgagePool,
PrePayment, and BondObject.

� Implements: None.

�Constructor
Pass an object of type MortgagePool,
InterestRate, Prepayment, BondObject,
and time horizon to the constructor.
MortgagePool is the underlying mortgage
pool for the stripped MBS.

�Method
double[] priceDeterministic()

26



If the PrepaymentObject generates
deterministic SMMS, use the closed form
expression given in Lecture 3. Returns the
price of PO and IO class.

�Method
double[] price()

Determine if the prepayment model is
deterministic or random. If prepayment
model is deterministic call method
priceDeterministic. If prepayment
model is random (option B) use monte-carlo
simulation. Generate a covariate based on
the general technique described in Lecture
3. Price using monte-carlo simulation.
Report price of PO and IO class.

27



Describe the 
ow

� Step 1: Ask the user for parameters of the
underlying mortgage pool. Create a
MortgagePool object.

� Step 2: Ask the user the prepayment option
he/she wants to use. Instantiate an object
of type PrePayment object.

� Step 3:
Create objects of type PrePayment and
BondObject.

� Step 4: Ask the user what MBS he/she
wants to price. Instantiate a PassThrough,
CMOobject, or StrippedMBS object based
on this.

� Step 5: Call the method price() in the

28



required MBS object.

� Step 6: Return the result to the user.

29



Discretizing an SDE

� SDE stands for stochastic di�erential
equation.

� Suppose yt follows the SDE given below:

dyt = �(y; t)dt+ �(y; t)dWt

�Drift term is �(y; t) and the volatility term
is �(y; t).

30



Goal

�Our goal is to build a lattice structure
corresponding to the process yt.

� Suppose we are only interested in
time-interval [0; T ].

� Step 1: Discretize File: slides-4.tex the
interval into N time steps. Each step-size is
of the size h = T

N . The discrete time steps
are [0; h; 2h; � � � ; Nh].

31



Goal (Contd)

� Step 2: Suppose we are at a node in the
lattice where the process has value y.
Successors of the lattice and the probability
on edges is given by the following equations:

Y +
h = y +

p
h�(y; t)

Y �h = y �
p
h�(y; t)

qh =
1

2
+
p
h
�(y; t)

2�(y; t)

� Y +
h and Y �h is the value of the process in

the up and down nodes respectively.

� Probability of an up-move is qh.

32



Problem (no recombination)

� Total displacement for up-move followed by
down-move is:p

h[��(y; t) + �(Y +
h ; t + h)]

� Total displacement for down-move followed
by up-move is:p

h[��(y; t) + �(Y +
h ; t + h)]

� In general the two quantities are not equal.

�No recombination. We want a recombining
lattice.

�When does the lattice recombine?

33



When does it recombine?

�When the volatility of y (given by �(y; t)) is
constant.

�Basic idea:
Transform Y to a new process X with
constant volatility.

�De�ne X(y; t) as follows:

Z y
0

1

�(Z; t)
dZ

�Assuming that X(y; t) is twice di�erentiable
in y and once in t, we can use Ito's lemma

34



to show that X(y; t) satis�es the following
SDE:

dX(yt; t) = �X(yt; t)dt+ dWt

Following equality should be easy to see:

@X

@y
=

1

�(y; t)

The volatility term in the SDE for X is
given by the following formula:

@X

@y
�(y; t)

35



Basic Idea

�Also assume that we can invert X , i.e.
there exists a function Y (x; t) such that:

Y (X(y; t); t) = y

�Most of the time we will only consider cases
where we can �nd analytic expressions for
X and Y . This is the case in the example
we will consider.

36



General Algorithm

� Warning: I am glossing over lot of technical
details. Will give reference at the end.

� Build a lattice for the transformed X
process. The lattice for X is recombining.

�Using the inverse Y function to derive a
lattice for y process. It is not as simple as
this. There are few technicalities.

37



Recombining lattice for CIR

� The SDE for the short-rate in the
Cox-Ingersoll-Ross model (known as CIR)
from here on is given by the following SDE:

dr = �(�� r)dt+ �
p
rdW

� Initial value of the short rate is r0.
�Goal: To build a recombining lattice for
the CIR model.

� Transform the r process

X(r) =
Z r
0

1

�
p
Z
dZ

=
2
p
r

�

38



CIR (Contd)

� If � � 0, � � 0, and r0 > 0, then 0 is lower
boundary for r (This can be proved
formally). Interest rate can never go
negative. This is an attractive feature of the
CIR model.

� Inverse transform for the X process is:

R(x) =

8>>>>><
>>>>>:

�2x2

4 if x > 0
0 otherwise

�We never want R(x) (which is the short
rate) to go negative. Therefore we have the
otherwise clause.

� Is there mean reversion in the model?

39



Algorithm

� Build the lattice for the X process. Derive
SDE for X using Ito's lemma. Use the
simple construction.

�At each node in the X-lattice we have the
value of X . We want to transform this
lattice into the lattice for short-rate.

� Suppose we are at a node with the value of
X process x. The r value corresponding to

this is given by �2x2

4 .

40



Algorithm (Contd)

�Now we have to decide the successors of
node with short rate R(x) and also want to
decide the probability of up-move. These
quantities are given by the following
equation:

x+h = x + J+
h (x)

p
h

x�h = x + J�h (x)
p
h

R�h = R(x� J�h
p
h)

� The probability qh of making an up move is
0 if R+

h (x) = 0 and if R+
h (x) > 0 the

expression for qh is given below:

h�(�� R(x)) +R(x)� R�h (x)

R+
h (x)�R�h (x)

�We need to chose the jump sizes J�h (x)

41



such that that the following constraints are
satis�ed:
(Legal probability): 0 � qh(x) � 1
Local drift convergence: As number of
periods N tends to in�nity, the local drift
should converge to the drift in the SDE.

42



Constraints

� Legal probability
Following equations have to hold:

qh � 1
h�(�� R(x)) +R(x) � R+

h
qh � 0

R�h � h�(��R(x)) + R(x)

� Local drift
Local drift of the short-rate has to match
with the drift in the SDE. Following
equation is trivially true:

qhR
+
h + (1� qh)R

�

h �R(x) = h�(��R(x))

43



Jump sizes

� The argument to derive jump-sizes is quite
technical. See the reference.

� J+
h (x) is given by:

the smallest, odd, positive integer j such
that

4h��

�2
+ x2(1� �h) < (x + j

p
h)2

� J�h (x) is given by:
the smallest, odd, positive integer j such
that

4h��

�2
+ x2(1� �h) � (x� j

p
h)2

or x� j
p
h � 0.

44



Back to MBS

�Assume that we have built the lattice model
for the CIR model. Want to price MBSs on
it.

� In order to price MBSs need SMMs on all
the nodes of the lattice. Once we have the
SMMs we can use the Hull-White method
(Paper 1) to price MBSs.

�Hull-White use a simple prepayment model
where the SMM only depends on the
interest rate at the node. The model is
simple and unrealistic.

�We will use simulation to estimate SMMs at
each node in the lattice.

45



MBSs on a lattice

�Generate M random paths through the
lattice.

�On each node in the path calculate the
SMMs. This will be estimated from the
prepayment model.

� Let us say a node N is touched k times
during the simulation run. Let
SMM1; � � � ; SMMk be the SMMs at the
node N for these k paths. SMM at node
N is given by the following equation:

1

k

kX
j=1

SMMi

46



MBSs on a lattice (Contd)

� There are some nodes that will not be
touched by the simulation runs. What do
we do? Perform interpolation/extrapolation
to �nd the SMMs at the node.

� Suppose there is a node N that is not
touched by the simulation runs. Find two
nearest nodes NU and NL such that the
following inequality holds:

NU(r) � N(r) � NL(r)

Short rate at node N is denoted by N(r).

� SMM for node N is given by the following
equation:

SMM(NL)+
�(N(r))(SMM(NU)� SMM(NL))

47



Where �(N(r)) is given by the following
equation:

�(N(r)) = N(r)�NL(r)
NU (r)�NL(r)

�What if we can't �nd NL or NU , use
extrapolation.

� Rest of the method same as Paper 1.

48



Hull-White method

�At each node in the interest-rate lattice
store MBmax and MBmin .

� Interpretation
MBmax (MBmin) is the maximum
(minimum) mortgage balance that can be
realized at that node. Notice that there are
many paths leading upto a node. On each of
these paths the mortgage balance on a node
can be di�erent.

� Forward Induction
At the root node MBmax and MBmin are
both the same (equal to the Mortgage
balance).

49



Forward Induction (Contd)

� Suppose we are going to compute MBmax

and MBmin for a node N . Let N1 and N2
be the predecessors of this node.

� Let maximum and minimum mortgage
balances at nodes N1 and N2 be given by
the following quantities:
MBmax ;1 , MBmin;1 ,
MBmax ;2 , MBmin;2 ,

�MBmax is given by the maximum of the
following quantities:

SMM(N)(MBmax ;1 � Smax ;1 )
SMM(N)(MBmax ;2 � Smax ;2 )

� Similar explanation applies to MBmin .

50



Hull-White method (Contd)

�At each node N we have MBmax and
MBmin (the maximum and minimum
possible mortgage balance at that node).

� If MBmin < MBmin , split into m equally
spaced values.

�We will write a node as (r;MB; SMM)
where r is the short rate, MB the mortgage
balance at that node, and SMM

determines the prepayment at that node.

� Let the successors of the node
(r;MB; SMM) be (r+;MB+) and
(r�;MB�).

� The value of the MBS at node
(r;MB; SMM) is given by the backward

51



equation:
V (r;MB; SMM) = 1

1+r
(CF + qV (r+;MB+) + (1� q)V (r�;MB�)

� Problem
Nodes (r+;MB+) and (r�;MB�) might
not exist.

� Solution
Estimate MB+ and MB� using
interpolation. For example, �nd two nodes
(rL;MBL) and (rU ;MBU) such that rL
and rU are nearest to r and the following
equation is true:

rL � r � rU

Estimate MB+ by interpolation.

52



Additional Information

� Formula given in Lecture 3 was correct.

�D.B. Nelson and K. Ramaswamy, Simple
Binomial Processes as Di�usion
Approximations in Financial Models, The
Review of Financial Studies, Vol 3, No 3,
1990.

53


