
Programming Project: Binomial-model
option-valuation

PRASAD CHALASANI

chal@cs.cmu.edu
(412)268-3194(office)

July 31, 1998

1 Introduction

The point of this programming project is to apply your programming (C,C++,Java)
and algorithm/data-structure-design skills to certain option-pricing problems in the
binomial model. You will also learn the following concepts:

1. Use ofrecursivefunctions,

2. Use ofdynamic programming(or backward recursion) to avoid an exponen-
tial growth in computation time.

3. Use of linearinterpolationto estimate a function value during backward
recursion.

Use whichever language you’re most comfortable with. This initial project may be
too easy. If so let me know. If you have any questions, email me or call me at the
office.

2 Background: option pricing in the binomial model

The following sub-sections give a watered-down account of the finance concepts
you’ll need for this assignment. If you’re curious and want to learn more, you
are encouraged to look up Steven Shreve’s lecture notes on Stochastic Calculus
and Finance, available athttp://www.cs.cmu.edu/ �chal . The first few
chapters cover the binomial model in detail.

1



2.1 Binomial model

The binomial model is used to compute the “fair price” of an option on an under-
lying asset, which we will often refer to as the “stock”. The inputs for setting up
the model are:

1. Thelife T (i.e., time to expiration) of the option under consideration. Typi-
call value: 1.0 year.

2. The numbern of equal-lengthperiods into whichT is to be divided. Each
period has length�t = T=n. For k = 0; 1; 2; : : : ; n, discrete timek will
refer to continuous-timek�t = kT=n. Typical value:n = 10; 20; 30; 60.

3. The continuously-compounded annualizedrisk-free interest rate r. Thus a
dollar invested in a risk-free instrument at time 0 would be worthR = er�t

at time�t years. Typical value:r = :05

4. The annualvolatility � of the stock price. Typical value:� = 0:3; 0:1.

From these inputs, the following parameters are computed:

1. Theup-factor u and thedown-factor 1=u, where

u = exp
n
�
p
�t
o
= expf�

q
T=ng: (1)

2. Theup-tick probability p, and down-tick probabilityq = 1� p, where

p =
R� 1=u

u� 1=u
=
er�t � 1=u

u� 1=u
: (2)

The stock price at (discrete) timek is denotedSk . The initial stock price
S0 is non-random and known. The processSk is specified as follows, fork =
0; 1; : : : ; n� 1:

Sk+1 =

(
uSk with probabilityp;

(1=u)Sk with probability1� p:

Notice that with the above choice of parameters, the expected value ofSk+1 given
Sk isSkR, i.e.,

E(Sk+1jSk) = RSk;

which means the discounted stock price process is a martingale.

2



The stock price process can be described by abinomial tree, where the initial
stock priceS0 is the root node, and each path in the tree represents a possible
sequence of stock pricesS0; S1; : : : ; Sn. A price path! is characterized by a
sequence of random variablesX1; X2; : : : ; Xn, whereXk = 1 if there is an up-
tick at timek and�1 otherwise. That is,

Sk+1 = SkXk+1; k = 0; 1; : : : ; n� 1;

and
P[Xk = 1] = p; P[Xk = �1] = q = 1� p:

We will also use the random variable

Yk =
kX
i=1

Xi; k = 1; 2; : : : ; n;

which is the number ofup-ticks minus down-ticksby timek.

2.2 Binomial lattice

Note that the stock priceSk at timek only depends on thenumberof up-ticksHk

that have occured by timek:

Sk = S0u
Hk(1=u)k�Hk = S0u

2Hk�k :

Thus in the binomial tree, several nodes at depthk actually represent thesame
stock priceSk. We use this fact to collapse the binomial tree into abinomial
lattice (sometimes also called arecombining binomial tree). A node numbered
(k; i) in the lattice represents a state at timek whereYk = i, i.e. the num-
ber of up-ticks minus down-ticks equalsi. Thus the root node of the lattice is
(0; 0). The two nodes at depth 1 are(1 � 1) and(1; 1). The three nodes at depth
2 are(2;�2); (2; 0); and (2; 2), and so on. In general the nodes at depthk are
(k;�k); (k;�k + 2); : : : ; (k; k). See Fig. 1 for a picture of a lattice. We will
abuse notation slightly, and denote the value of a random variableZ in state(k; i)
byZ(k; i). For instance the stock priceS in state(k; i) isS(k; i). Note that

S(k; i) = S(0; 0)ui = S0u
i: (3)

One useful way to think of a lattice node(k; i) is that it represents thecollection
of tree pathsreaching depthk from the root, that havei more up-ticks than down-
ticks.

3



(1,1)

(1,-1)

(0,0)

(2,2)

(2,0)

(2,-2)

(3,-1)

(3,-3)

(3,1)

(3,3)

Figure 1:A binomial lattice. A node(k; i) represents a state at timek when the number
of up-ticks minus down-ticks isi.

2.3 Options

A European-style optionwhich expires at discrete timen gives the owner the right
to exercisethe option at timen. When the owner exercises the option at timen,
she receives a payoffGn. The payoffGn depends only on the specific stock-price
historyS0; S1; : : : ; Sn that has occurred. For instance, a Europeancall option with
strike K has payoffGn = (Sn � K)+ where for any realx, x+ � maxfx; 0g.
Similarly, a Europeanput option with strikeK has payoffGn = (K�Sn)+. Note
that for these two simple options, the payoffGn depends only on thefinal stock
priceSn. Such options are said to bepath-independent. By contrast, the payoff
of a European-styleAsian call option with strikeK is given byGn = (An�K)+,
whereAk is the average stock price from time0 to timek:

Ak =
S0 + S1 + : : :+ Sk

k + 1
: (4)

The payoff of an Asian option is thus clearlypath-dependent.
An American-style option which expires at discrete timen gives the owner

the right to exercise the option atany time before the expiration timen. Such an
option is characterized by apayoff processGk; k = 0; 1; : : : ; n, whereGk depends
only on the specific stock-price pathS0; S1; : : : ; Sk that was realized at the time
of exercise. For instance an American call option with strikeK that expires at
time n has payoff functionGk = (Sk � K)+ for k = 0; 1; : : : ; n. Similarly an
American-style Asian call option has payoffGk = (Ak�K)+ for k = 0; 1; : : : ; n.

4



2.4 Pricing options

Denote a typical node in the (non-recombining) binomial tree byv, and its up- and
down-successors respectively byv+ andv�. Note that a nodev at depthk in the
tree defines aspecificpath of stock pricesS0; S1; : : : ; Sk. When referring to the
value of a processZk at a nodev, we will drop the subscript onZ, and denote it by
Z(v). For instance, the stock price at nodev is S(v), and theaveragestock price
on the path from the root tov isA(v). We define the special random variableD(v)
to be thedepthof v. Thus,D(v) denotes the time corresponding to the statev. We
also writev!w to denote thatv “leads to”w in the tree, i.e.,w is a successor of
v. For any nodev let P(v) denote theprobabilityof the path from the root tov.
Abusing notation slightly, whenv!w we writeP(wjv) to denote the probability
of reaching a nodew, starting fromv. Clearly,

P(wjv) = P(w)
P(v)

:

The expectation of a random variableZk is

EZk =
X

v:D(v)=k

Z(v)P(v):

Similarly, if D(v) � k, theconditional expectationof a random variableZk given
the current statev, is

E(Zkjv) =
X

w:D(w)=k;v!w

Z(w)P(wjv):

Consider a European-style option with payoff functionGn. Thearbitrage-free
valueof the option at a depth-k nodev is given by

V (v) = RkE
�
Gn

Rn

����v
�
= Rk�nE(Gnjv): (5)

From this it is easily seen that for non-terminal nodesv (i.e.,D(v) < n), V (v)
can be recursively written as

V (v) =
pV (v+) + (1� p)V (v�)

R
; (6)

and for terminal nodesv, the value is simply the payoff:

V (v) = G(v): (7)

5



For path-independentoptions, the recursive expressions above remain valid even if
v; v+; v� represent binomiallatticenodes rather than tree nodes.

The valuation of American-style options is complicated by the fact that the
owner may use astrategyto exercise her option: at any timek � n, she can decide
whether or not to exercise the option, based on the history of the stock price so far.
Fortunately, the arbitrage-free value of an American-style option at a nodev can
be expressed recursively in a manner similar to the European case. Specifically, on
the (non-recombining) binomial tree, for non-terminalv,

V (v) = max

(
G(v);

pV (v+) + (1� p)V (v�)

R

)
; (8)

and for terminalv,

V (v) = G(v): (9)

Theoptimal exercise strategy(i.e. the one that maximizes the expected dis-
counted payoff) for the owner of the optioncan be easily defined from the backward-
recursive computation: While moving forward on a path from the root node, if the
current node isv, exercise immediately if and only ifV (v) = G(v), or equiva-
lently,

G(v) � pV (v+) + (1� p)V (v�)

R
:

Thus, on any tree path, the optimal exercise point is theearliestnodev where the
option payoffG(v) from immediate exercise equals the option valueV (v).

Again, for path-independentoptions, the same expressions can be used on the
binomial lattice.

3 Programming problem: using recursive functions

3.1 American put option.

This problem asks you to write a C/C++/Java program to compute the (arbitrage-
free) value of a simple American-style put option on a stock (defined in Section
2.3). Use a recursive function, and donot explicitly construct the binomial tree.
Recall that the payoff of a put option with strikeK when exercised at timek is
Gk = (K � Sk)+. Equivalently, when exercised at a nodev of the binomial tree,
the payoff is

G(v) = [K � S(v)]+:

The inputs to the program are:

6



1. Expiration timeT (years) of the option,

2. Number of time-divisionsn,

3. Risk-free annual interest rater,

4. Stock volatility�,

5. Initial stock priceS0 (dollars),

6. Strike priceK (dollars).

Hints:First compute the binomial tree parametersu (up-factor) andp (up-probability),
using (1) and (2). Next, we would like to use the expressions (8) and (9) to define a
recursive functionV (v) to compute the option value at a nodev. How would you
represent a nodev? Convince yourself that, since a put option is path-independent,
it suffices to represent nodev by its depthk = D(v) and the stock priceS(v).
Given v = (k; S), the representation forv+ andv� is easily computed (how?).
Thus your recursive function would look likeV (k; S), and should return the op-
tion value at a node of depthk at which the stock price isS. In other words,
V (k; S) is the option value in the state at timek in which the stock price isS.
Clearly the option value at time 0 (which is what we need to ultimately compute)
is then obtained by invokingV (0; S0).

3.2 Time complexity.

Run the program withn = 10 time-divisions and see how long it takes. Based
on this, estimate how long the program would take withn = 60 time-divisions. To
answer this, you’ll need to understand thetime complexityf(n) of the algorithm:
this means that the algorithm takes time proportional tof(n) for some function.
What is the functionf(n) in this case?

3.3 Asian call option.

Modify your code to compute the value of an American-styleAsian call option
on a stock, with strikeK. As mentioned above, the payoff of this option at a
binomial-tree nodev is

G(v) = [A(v)�K]+;

whereA(v) is the stock-price average on the path from the root tov (defined in
(4)). The inputs to this program are the same as before. Again, do not explicitly
construct the binomial tree; use a recursive function.

7



Hints. Since an Asian option is path-dependent, we will need to represent a
nodev by more than just the depthk and the stock priceS(v). Convince yourself
that it suffices to represent a nodev by (k; S; A) wherek is the depthD(v), S =
S(v), andA isA(v), the average stock price on the path from the root tov. Given
v = (k; S; A) you can easily compute the representation forv+ andv� (how?).
Thus your recursive function would look likeV (k; S; A), and should return the
value of the option in the state at timek where the stock price isS, andthe stock-
price-average so far isA. The time-0 value of the option is thenV (0; S0; S0).

4 Programming problem: using dynamic programming
on the lattice

4.1 American put option.

As the number of time-divisionsn increases, the time taken by the above recur-
sive pricing function increases rapidly. (You should have answered exactly how
fast in the previous section). For a simple put option, however, we saw that the
option value at a nodev = (k; S) depends only onk andS, i.e., the option is
path-independent. In particular, at every depth-k nodew with S(w) = S, the op-
tion valueV (w) is thesame.Thus the above recursive-function approach is very
wasteful: the functionV (k; S) in invokedeverytime a depthk nodev is reached
with S(v) = S. We can avoid this waste if we represent the tree as a binomial
lattice, which as explained in Section 2.2 collapses all nodes at a given depth that
have the same stock price. In other words, the lattice representation does not lose
any information, as far as pricing this option is concerned. As mentioned in Sec-
tion 2.4, for path-independent options, the recursive expressions (8) and (9) remain
valid on the lattice.

How would you write a program to take advantage of this fact? An easy way
to do this is to explicitly create a lattice using say a two-dimensional arrayV [][]
so thatV [k][i] stores the value of the option at lattice node(k; i) (recall thati is
the number of up-ticks minus down-ticks, which uniquely determines the stock
price at the lattice node). Start from the end of the lattice, i.e.,k = n, and set
the option valueV [n][i] for i = �n; : : : ; n, to be equal to the immediate payoff
(this is expression (9)). Then continue backward on the lattice, computing for
eachk, the valuesV [k][i], i = �k; : : : ; k, (using (8)) and so on until you obtain
V [0][0], which is the time-0 option value. This type of procedure is calleddynamic
programming. Write the code to compute the option value as outlined above.

8



4.2 Time complexity

How long does your program take forn = 10? What aboutn = 60? What is the
time complexity of your algorithm?

4.3 Optimal exercise strategy

Modify your code so that it prints out the optimal exercise strategy for the given
American put. In particular, print out the lattice node coordinates(k; i) where it is
optimal to exercise the option immediately. Recall that on any path in the lattice,
the optimal exercise point is the earliest nodev whereV (v) = G(v).

5 Asian call option: Hull-White interpolation method

Unfortunately, an Asian option is path-dependent, so the above lattice approach
cannot be used to compute the value faster. In fact, in general the average stock
pricesA(v) for all depth-k nodesv of the tree are different from each other! So
at depthk there are2k possible stock price averages. Thus, unlike in the case of
an American put option, there is no wasted computation in the recursive function
approach above; each specific invocationV (k; S; A) is made only once. Conse-
quently, the valuation of Asian options (European- or American-style) has been a
very hard problem in finance. However, numerousapproximatealgorithms have
been proposed, and you will implement one such recent algorithm of Hull and
White [3].

To describe the Hull-White method, it is best to consider the lattice-based
American put algorithm you implemented in Section 4.1. There, we defined a
two-dimensional arrayV [][] whereV [k][i] stores the option value at lattice node
(k; i). This does not work for Asian options because each tree-path represented by
a lattice node(k; i) has a different average-stock priceAk, which we could number
a1; a2; : : : ; am. However in principle wecouldextend this to Asian calls using a
threedimensional arrayV [][][] whereV [k][i][j] stores the option value at timek
when there have beeni more up-ticks than down-ticks,andthe average stock price
so far isaj . Obviously this method would be just as slow as the recursive-function
approach.

The main idea of the Hull-White approximate algorithm is this: Don’t compute
the option value at every possible value of the stock-price-average at lattice node
(k; i); rather, compute it only for certainspecialvalues of the average stock price,
of the form

S0e
mh;

9



for a specificgrid sizeh (such as 0.01) and different integersm (which could
be negative). Specifically, use a 3D arrayV [][][], whereV [k][i][j] represents the
(American-style) Asian call option value at the state at timek where the up-ticks
minus down-ticks isi, and the average stock price1 isS0ejh. For each lattice node
(k; i), a certain range of possible values of the third indexj must be considered.
We let aki be the smallest index considered at node(k; i) andbki be the largest.
The range(aki; bki) must be chosen so that all possible stock-price-averages that
are considered at node(k; i) lie betweenS0 expfakihg andS0 expfbkihg. Thus
aki must be chosen to be the biggest integerm such that

S0 expfmhg � smallest possible average at(k; i)

andbki must be chosen to be the smallest integerm such that

S0 expfmhg � biggest possible average at(k; i).

You can use a conservative estimate for the right-hand-sides of the inequalities
above. For instance (this is Pankaj Mody’s idea) the “smallest possible average
at (k; i)”, is clearly no smaller than the smallest possible stock price on any path
reaching(k; i), which is

S0u
(i�k)=2 = S0 expf�

q
T=n(i� k)=2g:

(See Fig. 1 and consider paths reaching(3; 1) to convince yourself of this). Sim-
ilarly the “biggest possible average at(k; i)”, is clearly no bigger than the biggest
possible stock price on a path reaching(k; i), which is

S0u
(k+i)=2 = S0 expf�

q
T=n(k + i)=2g:

Thus you can use

aki =

�
�
q
T=n

i� k

2h

�
;

and

bki =

�
�
q
T=n

k + i

2h

�
:

The functionbxc is computed by the C++ functionfloor(x) , which returns the
biggest integer� x. The functiondxe is computed byceil(x) , which returns
the smallest integer� x.

1There may actually be no state with this specific average stock price, but this is immaterial to
the algorithm.

10



The first stage in the Hull-White algorithm is to compute the above ranges
(aki; bki) for each lattice node(k; i) and set up the appropriate 3D arrayV [][][] to
accomodate these ranges.

Using the above data structure, let us apply the recursive expressions (8) and
(9) to compute theV [k][i][j] values. Note that we can setV [n][i][j] to be simply
(S0e

jh � K)+ (this is the option value at timen when the average stock price is
S0e

jh).
Now suppose we have computed the entriesV [g][][] for all g = k + 1; k +

2; : : : ; n. Let us consider the computation of a specific entryV [k][i][j]. This
represents the (approximate) option value of the option in a state at depthk where
the stock price isS0ui, and the average stock price so far isS0e

jh. Let us denote
this state by(v) (this is essentially a tree node), so thatS(v) = S0u

i andA(v) =
S0e

jh. You may think that we can now simply use the recursive expression (9) to
computeV [k][i][j]. But life is not so simple. To use the recursion (9) you must
first compute theS andA values at nodesv+ andv� (you already did this for the
recursive-function approach of Section 3.3); denote these values asS(v+),A(v+),
etc. For instance,

S(v+) = uS(v); A(v+) =
(k + 1)A(v) + uS(v)

k + 2
:

Now to use the recursion (9), you also need the valuesV (v+) andV (v�). Consider
for exampleV (v+), which is the option value at lattice node(k + 1; i + 1) on a
path where the arithmetic average so far isA(v+). However, at this lattice node
you have only computedV [k+1][i+1][] for certainspecialvalues ofAk+1, namely
for those of the formS0ejh for all integersj in the range(ak+1;i+1; bk+1;i+1). The
arithmetic averageA(v+) will not in general be of the formS0esh for integers.

This leads to theinterpolation idea. Instead of using theexactvalues ofV (v+)
andV (v�) in the backward recursion (9), we will use approximationsV (v+) and
V (v�) respectively. Hull-White use linear interpolation to compute these approx-
imate values. Consider for instanceV (v+). From the way we chose the ranges
(aki; bki), there must exist somes in the range(ak+1;i+1; bk+1;i+1) such that

x1 = S0e
sh � x = A(v+) � x2 = S0e

(s+1)h: (10)

We have already computed the option valuesy1 = V [k + 1][i + 1][s] andy2 =
V [k+1][i+1][s+1]. We therefore approximate the valueV (v+) by the interpolated
value

V (v+) = y1 +
y2 � y1
x2 � x1

(x� x1):

11



We finally computeV (v) = V [k][i][j] using expression (9) withV (v+) and
V (v�) on the right hand side replaced by their approximationsV (v+) andV (v�)
respectively. In this way we eventually computeV [0][0][0], which is the time-0
value of the American-style Asian call option.

Write the complete code to implement the Hull-White method described above.
In addition to the usual inputs to this code, we now have an additional input: the
grid-sizeh that determines the “granularity” of the interpolation.

For smalln (less than 15 or so), compare the answers you get from the Hull-
White method using various grid sizesh (use for exampleh = 0:1 and lower),
with the exact values using the recursive-function method of Section 3.3. Also
see how much improvement in accuracy you get by reducing the grid sizeh. Are
the Hull-White answers consistently above or below the exact answers? (It can be
shown that the Hull-White approximation is in fact anupper-boundon the exact
price) Run the Hull-White algorithm forh = 0:05 andn = 50, and see how long it
takes. Compare this with the length of time you estimated the recursive function-
based program would take (you probably will not want to wait for the answer using
that program!).

6 Black-Derman-Toy: A Binomial Term-structure Model

As before, letT be the time horizon, and letn be the number of time-divisions, so
that�t = T=n. The short-term interest rate, orshort-rate, at timek, is defined
as the risk-free interest rate that holds from (discrete) timek to time k + 1. In
other words, ifr is the short-rate at timek, then investing one dollar in a risk-free
instrument at timek will result in a payoff ofexpfr�tg at timek + 1. In the
models of the previous sections, we assumed that the short-rate at all timesk is
a fixed constant. We will now consider a model where the short-rate is random,
and follows a binomial process somewhat like the stock-price process introduced
earlier. We will for the moment ignore the model for the stock price process.

6.1 The model

The short-rate model we will describe is called theBlack-Derman-Toy (BDT)
model [1, 4]. The model is described in terms of the binomiallattice introduced in
Section 2.2. Recall the notation introduced in Section 2.4, where a nodev in the
binomial lattice represents a certain state, andZ(v) denotes the value of a random
variableZ in statev. Recall also thatD(v) is the depth ofv, i.e., the discrete time
corresponding tov. Finally, recall thatv+ andv� are the up- and down-successors

12



of v.
For anynon-terminalnodev, let r(v) be the short-rate that holds in statev

from timeD(v) to timeD(v)+1. To illustrate, forv = (3;�1), r(v) = 0:1means
that if the state at time 3 is(3;�1), then the short rate from time 3 to time 4 is
10%. This means one dollar invested in a risk-free instrument at time 3 in state
(3;�1) will result in a guaranteed payoff ofexpfr(v)�tg at time 4. In particular,
for the starting nodev0 = (0; 0), r(v0) is thefixed, known, non-randomshort-rate
at time 0. (This is analogous to knowing the initial stock priceS0 in the stock price
binomial model.) The BDT short-rate model has two sets of parameters:

a0; a1; : : : ; an�1;

and
b0; b1; : : : ; bn�1:

For0 � k < n, the short-rater(v) at lattice nodev = (k; i) is given by

r(v) � r(k; i) = ak(bk)
i; k � 1: (11)

Notice the similarity of this model to the stock-price model (3): ifak = r(0; 0)
(the initial short-rate) for allk, andbk = u for all k, the short-rate model would be
exactly the same as the stock price model.

The short-rater(v) is closely related to theone-period discount factorf(v)
in statev:

f(k; i) = expf�r(k; i)�tg:
This means that if the current state isv = (k; i), then one dollar at timek + 1 is
worth f(k; i) in the current state. Finally, the probability on every branch in the
lattice is assumed to be 0.5.

6.2 Pricing short-rate securities using the model

Consider an arbitrary European-style security with expirationn, whose payoff
G(v) depends only on the short-rater(v). Such a security is clearlypath-independent.
Recall that a European-style security can be exercised only at expiration. The BDT
model can be used to price such an option. As you might expect, the pricing of a
short-rate derivative in the short-rate model is exactly analogous to the pricing of
a stock-price derivative in the earlier stock-price model. In that earlier model, the
derivative’s payoff depended on the stock price; in the present case, the payoff of
the security depends only on the short-rate. Indeed, thearibtrage-free valueV (v)
at nodev of such a security is defined as theexpectation of the discounted payoff,
over paths fromv to leveln in the lattice.

13



We now make this more precise. For any path� in the lattice, letP(�) denote
its probability , which in this case is simply12 to the power of the length (i.e.
number of edges) of the path. LetF (�) be thediscounton a path�, defined as the
product of the one-period discount factors along the path. Abusing notation, define
thepayoff G(�) on a path� to be the payoff at the node at the end of the path. For
instance, in Fig. 1, for the path

� = (0; 0)(1; 1)(2; 0);

the payoffG(�) = G(2; 0), the probabilityP(�) = (12)
2 = 1=4, and the discount

F (�) = f(0; 0)f(1; 1). Note that we donot includef(2; 0) in F (�) sincef(2; 0)
applies for the period from time 2 to time 3, which is not covered by the path� (it
only goes up to time 2).

Now we can state our definition ofV (v) more precisely: it is the sum over
all paths� from v to leveln, of the productP(�)F (�)G(�); this is exactly the ex-
pected discounted payoff. For example, in the lattice of Fig. 1, consider a European
option expiring at time 2, whose payoff functionG is

G(2; 2) = 0; G(2; 0) = 1; G(2;�2) = 2:

Supposef(v) = :9 at all nodesv. Then to compute the valueV (0; 0) of this
security at node(0; 0), notice that there are four paths from(0; 0) to level2 (the
expiration time):

up-up, up-down, down-up, down-down,

and the probability oneach path is1=4. Therefore,

V (0; 0) =
1

4
f(0; 0)f(1; 1)G(2; 2)+

1

4
f(0; 0)f(1; 1)G(2; 0)

+
1

4
f(0; 0)f(1;�1)G(2; 0)+ 1

4
f(0; 0)f(1;�1)G(2;�2)

=
1

4
(0:9)2+

1

4
(0:9)2+

1

4
(0:9)22

= 0:81

From this you can easily see that the valueV (v) of a European short-rate option
expiring atn is given by thebackward induction

V (v) =

(
G(v) if the depthD(v) isn;
1
2f(v) (V (v

+) + V (v�)) otherwise
(12)

14



which is exactly analogous to expressions (6) and (7) for stock options.
Write code using the above backward induction to price a European call option

on the short rate, with strike rateK. This is analogous to a call option on the stock
price. The payoffG(v) of such an option at nodev = (k; i) is given by

G(v) = (r(v)�K)+ =
h
ak(bk)

i �K
i+

:

The input parameters to your code are the option expiration timeT , the number of
time-divisionsn, the strikeK, and the initial short-rater(0; 0). Assume that the
BDT parametersbi = 1:01 for all i, andai = r(0; 0) for all i. Your code should
use the fast dynamic programming approach you implemented in Section 4.1 (i.e.,
donotuse a recursive function).

6.3 Green’s function and forward induction

We will now consider an alternative,forward-inductive way to compute the value
of a European short-rate option. First we will need the concept of apure-state
security. For a lattice node(k; i), a pure-state securitys(k; i) is simply a (Euro-
pean) short-rate security expiring at timek that pays off $ 1only at (k; i) and 0
everywhere else.

Now for a lattice node(k; i), Green’s function [2, 4]H(k; i) is defined as the
time-0 value of the pure-state securitys(k; i). For instance, in Fig. 1,H(2; 0)
is the time-0 value of the pure-state securitys(2; 0), i.e., a European short-rate
option expiring at time 2 that pays $ 1 at node(2; 0) and zero at all others. Using
the definition of “value” given in the previous sub-section, we computeH(2; 0)
as follows: We take the sum over all paths� from (0; 0) to (2; 0), of the product
P(�)F (�):

H(2; 0) =
1

4
f(0; 0)f(1; 1) +

1

4
f(0; 0)f(1;�1)

Note thatH(k; i) can be computed by a simpleforward induction:

H(k + 1; i) =
1

2
[H(k; i� 1)f(k; i� 1) +H(k; i+ 1)f(k; i+ 1)] if jij � k � 1,

=
1

2
H(k; i� 1)f(k; i� 1) if i = k + 1, (13)

=
1

2
H(k; i+ 1)f(k; i+ 1) if i = �k � 1,

The initial condition isH(0; 0) = 1.

15



Note that an arbitrary short-rate security expiring at timen with payoffG(v)
can be viewed as a combination of pure-state securities. For instance, recall the
example considered before of a European short-rate security expiring at time 2,
with payoffs given by

G(2; 2) = 0; G(2; 0) = 1; G(2;�2) = 2:

This can be viewed as a combination of 0 pure-state securitiess(2; 2), one pure-
state securitys(2; 0) and 2 pure-state securitiess(2;�2). Naturally the time-0
value of the combined security is simply the sum of the time-0 values of the ap-
propriate multiple of the individual pure-state securities. In this example, the value
of the combined security is the sum of the value of the pure-state securitys(2; 0)
(which isH(2; 0)) plus 2 times the value ofs(2;�2) (which isH(2;�2)).

In general, the time-0 value of a European short-rate security expiring at time
(n+ 1) with payoff functionG(v) is given by

V (0; 0) =
n+1X

i=�n�1

H(n+ 1; i)G(n+ 1; i) (14)

In factV (0; 0) can also be written as

V (0; 0) =
nX

i=�n

H(n; i)f(n; i)
1

2
[G(n+ 1; i+ 1) +G(n+ 1; i� 1)]

(15)

Write code to price the short-rate call option of the previous subsection, but this
time byforward inductionusing the above Green’s function approach (14). Use an
arrayH[][] to store the Green’s function values. First compute the Green’s func-
tion values by forward induction using (13). Then compute the option value using
(14). Assume the same input parameters and BDT-parameters as in the previous
subsection.

6.4 Pricing bonds

What do we really mean when we say that the “risk-free rate of interest” for a short
period of time�t is r? This means there is a certain risk-less instrument with the
property that that if you invest $ 1 in this instrument at time 0, then you will receive
a payoff ofer�t dollars at time at time�t. A government bond is an example of a
risk-less instrument. More precisely, azero-coupon bond(also informally called
a “zero,” or a “pure-discount bond”) maturing at discrete timek is an instrument
that pays 1 dollar at discrete time timek (which is continuous timek�t). Unlike

16



a call option, the payoff from a bond at maturity is fixed and not uncertain. This
is why a bond is called arisk-lessinstrument, or afixed-incomeinstrument. Of
course, to own a bond, one must pay a price, and we now consider how to compute
this price.

Consider an(m + 1)-maturity bond. This is simply a European short-rate
security that expires at time(m+ 1) and pays exactly $ 1 ateverylattice-node at
levelm + 1, i.e.,G(v) = 1 for every nodev at levelm + 1. Therefore, in terms
of Green’s function, we can write the time-0 value of the(m + 1)-maturity bond,
writtenBm+1, in two different ways (see (14) and (15)):

Bm+1 =
m+1X

i=�m�1

H(m+ 1; i) (16)

=
mX

i=�m

H(m; i)f(m; i) (17)

The second form will be useful for us later, when we fit the parameters of the short-
rate model so that the bond prices computed from it match their known market
prices.

Modify the code of the last section to compute the time-0 value of a bond ma-
turing in timeT . Input parameters to your code are the same as in the previous
subsection (except that you don’t need the strikeK in this case). Assume the same
BDT parameters as in the previous subsection. Price the bond using the forward-
inductive approach using Green’s function (expression 16). Use an arrayH [][] to
store the Green’s function values. First fill in the array up toH [n][] and then use
expression 16 to compute the bond valueBn.

Return to the backward-induction approach you implememented in Section 6.2
using (12). Use that approach to price aT -maturity bond ateverynodev of the
lattice. Notice that to start the backward induction, at the terminal nodesv you must
useV (v) = G(v) = 1, since a bond is worth exactly 1 dollar when it matures. The
rest of your code would look just like the code for the short-rate call option you
implemented in that Section. (You will need the bond valuesV (v) at every lattice
node for the next section).

6.5 Pricing bond options

In the last exercise of the previous section you computed the valueV (v) (which
we will here denote byB(v)) of a T -maturity bond at every lattice node. Now
we can define call and put options on bonds exactly like the corresponding options
on stocks; the only difference is that the underlying variable for bond options is

17



the bond price rather than the stock price. Specifically, form < n, anm-period
European-stylecall option with strikeK on ann-maturity bond can only be exer-
cised at timem, and the payoff at a level-m nodev is given by

G(v) = (B(v)�K)+:

Notice that there are two different maturities involved here: the maturity of the
bond, which is longer than the maturity of the option on the bond.

In the BDT model, bond options are valued using the same backward-recursion
approach based on (12) that you implemented in the last Section and in Section 6.2.
To compute the option price, you will start at the end of the lattice (leveln) and
compute the bond valuesB(v) at each nodev by backward induction (as you did
in the last Section), until you reach levelm. At levels belowm you will no longer
need the bond values. At levelm, you will also compute the terminal values of the
option. In particular, at a nodev at levelm, from Eq. (12), you will compute the
option valueV (v) as

V (v) = G(v) = (B(v)�K)+:

At a nodev at a level smaller thanm, you will use the second equation in (12) to
compute the option value, and finally arrive atV (0; 0).

Write code to price a European call-option with strikeK expiring at timeT=2
on a bond that matures at timeT . Usem = bn=2c as the expiration time for
the option (this roughly represents continuous-timeT=2). Your input parameters
should beT; n;K as before. Assume the same BDT model as before.

6.6 Fitting the model to current bond yields

So far we just assumed that the parameter-setsfaig and fbig came “out of the
blue”. Of course, for the model to be useful, these parameters should be chosen so
that they are consistent with the current market data. We now describe how this is
done.

The yield Ym of anm-maturity bond (at time 0) is defined as the effective
constant interest-rate that would result in the same growth as anm-maturity bond.
In other words,Ym satisfies

1

Bm
= expfYmm�tg; (18)

or

Ym = � 1

m�t
lnBm:

18



(Recall thatBm is the time-0 price or value of them-maturity bond). Thecurrent
term-structure of interest rates is a specification of the current yields

Y1; Y2; : : : ; Yn;

of bonds maturing at (discrete) times1; 2; : : : ; n. Note that from the above equa-
tions, this is equivalent to specifying the current prices of these bonds.

In this sub-section we will consider how to fit the BDT model parametersfaig
to the current term-structure, given the parametersfbig. In other words, we would
like to pick thefaig parameters so that the bond-prices (or equivalently, bond-
yields) match the current term-structure given by thefYig. This is done by the
following algorithm:

1. Initially seta0 = Y1, and set the Green’s function valuesH(0; 0) = 1,

H(1;�1) = H(1; 1) = (0:5)f(0; 0) = (0:5) expf�Y1�tg;
and letk = 1. In the code, you will have an arrayH[][] to store the Green’s
function values.

2. Compute theak value as follows. At this stage, theH(k; i) values are known
for all i = �k; : : : ; k. From the input dataYk+1 is known, which means
Bk+1 is known (expression (18)). From expression (17),Bk+1 must satisfy

Bk+1 =
kX

i=�k

H(k; i)f(k; i)

=
kX

i=�k

H(k; i) expf�r(k; i)�tg

=
kX

i=�k

H(k; i) expf�ak(bk)i�tg (19)

Since thefbig parameters are known, the only unknown above isak, so
call the expression (19)g(ak), to emphasize that it is a function ofak . You
therefore need to findak so thatBk+1 = g(ak), i.e., you must solve the
(non-linear) equation	(x) = 0 where	(x) � g(x) � Bk+1. You can
use the standard Newton-Raphson (see Appendix) method, with initial guess
x0 = ak�1, to solve this equation forx; this solution will be theak value.

3. ComputeH(k+1; i) for i = �k�1; : : : ; k+1 using the forward induction
(13), with

f(k; i) = expf�r(k; i)�tg= expf�ak(bk)i�tg:

19



(In this expression, use theak value just computed.)

4. Incrementk by 1. If k < n, return to step 2; otherwise, stop.

(a) Implement the above algorithm to find the BDT parametersa0; a1; a2; : : : ; an�1
so that they fit the current term-structure. Assume thatbi = 1:01 for all i, and
that the current term-structure is given by the bond pricesBi = (0:99)i, for
i = 1; 2; : : : ; n. The input parameters to your code areT andn. Given any
T; n as input, your code should outputa0; a1; : : : ; an�1.

(b) Use yourfaig values to compute the bond pricesBi, i = 1; 2; : : : ; n, using
the approach you used in Subsection (6.4). These should match the specified values
(0:99)i. Note that you can use the Green’s function values that you just computed
in the algorithm above, and use expression (16) to compute the bond prices.

(c) Use yourfaig values to price a call option on the short-rate that expires at
timen�1 with strikeK (this was described in Subsection 6.2), using the approach
used in Subsection 6.3. Again note that you can use the Green’s function values
that you just computed in part (a), and use expression (14) to compute the option
value.

References

[1] F. Black, E. Derman, and W. Toy. A one-factor model of interest rates and its appli-
cations to treasury bond options.Financial analysts journal, pages 33–39, February
1990.

[2] D. Duffie. Dynamic Asset Pricing Theory. Princeton University Press, 2 edition, 1996.

[3] J. Hull and A. White. Efficient procedures for valuing european and american path-
dependent options.Journal of Derivatives, 1:21–31, 1993.

[4] F. Jamshidian. Forward induction and construction of yield curve diffusion models.
Journal of fixed income, pages 62–74, June 1991.

APPENDIX

A The Newton-Raphson method to solve single-variable
equations

If you have code to compute a one-variable functionf(x), the Newton-Raphson method
can be used to find the value ofx for which f(x) = 0. The algorithm is as follows. Let
� > 0 be the solution accuracy desired (use� = 10�6), and let� > 0 be an “infinitesimal”

20



quantity (use� = 10�10). Let MAX be the maximum number of iterations by which the
algorithm should succeed.

1. Setx = x0, wherex0 is a “good guess” for the solution. Letk = 1.

2. Set

x0 = x�
f(x)

f 0(x)
;

wheref 0(x) is the derivative off w.r.t. x, and is computed by the approximation

f 0(x) '
f(x + �) � f(x)

�
:

3. Incrementk by 1, and setx = x0.

4. If jf(x)j < �, STOP (x is the desired solution).

5. Otherwise, ifk > MAX STOP and print FAILURE (since no solution has been
found within MAX iterations).

6. Otherwise, return to step 2.

21


