
1

The Software Lifecycle

Examining the phases of large-scale
software development projects

Jeff Stephenson

Software Lifecycles

• Software Engineering vs. Programming
– What you have done for our past assignments is mostly

programming -- (write a method to do this, etc.)

– Programming is only one part of creating a software
system

• An incredibly important part!!!

• In real systems, a smaller part than you would imagine.

– For real systems, there is a lot of work to be done both
before programming and afterwards.

2

Software Lifecycles

• Adopting an engineering approach to software
development means taking a “holistic” view.

• A software system has a lifecycle.
– Extending from the conception of the idea (hey,

wouldn’t it be great if…..)

– Until the system is no longer needed (always longer
than the engineers anticipated -- Y2K bugs, etc).

• Software Engineering addresses all of the parts of
the lifecycle.

Software Lifecycles

• Software projects need to be planned! (obviously)

• We’ll want to follow a process for developing
software.

• Each published “process” for software
development assumes a certain lifecycle for a
proposed project.

• The process will take the project through a series
of phases according to a lifecycle model.

3

Waterfall Model

• This is one type of
lifecycle model. Each
phase is completed
before moving on to
the next phase.

– Requirements

– Design/Specification

– Implementation

– Verification

– Maintenance

Requirements
 Elicitation

and Analysis

System Design
and

Specification

Implementation
(coding)

Verification
(Testing)

Maintenance

Requirements Elicitation and Analysis

• Step 1: Requirements Elicitation/Analysis
– The initial step of the process is defining (in as precise

terms as possible) what problems the user needs the
proposed system to solve.

– The focus is on the PROBLEM, not the system. You
should not worry about the constraints of technology
(or your skill) when establishing the user requirements.

4

Requirements Elicitation and Analysis

• Step 1: Requirements Elicitation/Analysis (2)
– The fundamental challenge of this stage is gaining an

understanding of what the user truly wants.

– Natural language descriptions are ambiguous, and users
often operate on a different set of assumptions than
developers.

– Often, software engineers employ techniques such as:
• Over the Shoulder Requirements Gathering

• Use Cases/Scenarios

• Prototypes/Mock-ups

Requirements Elicitation and Analysis

• Step 1: Requirements Elicitation/Analysis (3)
– The deliverable of this phase is a document specifically

describing the user requirements that the system must
satisfy (SRS).

– Traditionally, both the customer and the development
team sign off on this document.

– Errors at this stage are the most costly to fix (such as
omitted requirements or misunderstood requirements).

– Approx. 10% of total project time, and 5% of project
cost expended during this phase (as high as 20% of
time).

5

System Design and Specification

• Step 2: Design and Specification
– We now know WHAT the system will do, but HOW will

it be done?

– In this phase we will describe the software architecture
that we will later build.

– We will most likely use both textual and graphical
notations that correspond with a design methodology.

System Design and Specification

• Step 2: Design and Specification (2)
– Structured Design (Flow Charts, Data Flow Diagrams)

– Entity-Relationship Diagrams (Data Driven)

– Object Oriented Design (Object Models, Class
Diagrams, UML)

• Show the classes to be created

• What services (methods) each class will offer.

• The relationship between classes (inheritance trees, association
diagrams).

– We may also use formal specification languages to
specifically describe the behavior of the system and
prove properties about

6

System Design and Specification

• Step 2: Design and Specification (3)
– We may also use formal specification languages to

specifically describe the behavior of the system

– These languages are mathematically based and are often
used when you need to prove some invariant of the
system (such as “Our system will never deadlock”).

– Examples of formal languages include:
• Z (based on set theory)

• CSP (specifically for concurrent systems).

• NP (used along with a formal model checking program)

System Design and Specification

• Step 2: Design and Specification (4)
– Errors at this stage are also very expensive to fix and a

lot of effort is put into verifying designs (with CASE
tools, etc).

– Poor designs often lead to maintenance nightmares, and
band-aided systems.

– Typically around 30% of project time, and 20% of
project cost will be expended in this phase.

– The deliverable of this phase is a document which
describes the software architecture of the proposed
system in detail (SDD, etc.).

7

Implementation

• Step 3: Implementing the System
– This part involves translating each of the modules

described in the system design into functioning code.

– 90% of a typical computer science education focuses
solely on this phase

– Implementation is made much easier if your choice of
language supports your design methodology.

• You won’t have an easy time implementing an object-oriented
design in a non-object-oriented language!

– Typically, 30% of project time and 35% of project cost
expended in this phase.

Verification

• Step 4: Testing the System
– This part results from a larger concern of “quality

assurance.”

– Several levels of testing occur.
• Unit Testing -- Testing each module to see that it functions as

specified

• Integration Testing -- Testing the integration of several modules

• System Testing -- Testing that the system meets the user
requirements!!!

– Typically, 30% of project time and 40% of project cost
expended in this phase. (Yes, that is a huge amount.)

8

Maintenance

• Step 5: Maintaining the System
– So, you have delivered the system. Congratulations!

– However, in most cases, you are nowhere near finished.

– Customers are good testers, and their needs change over
time.

• You may perform three types of maintenance:
– Perfective Maintenance (improving the quality over time without

changing functionality).

– Adaptive Maintenance (changing the system to react to changing
environments).

– Corrective Maintenance (correcting errors found in the system).

Maintenance

• Step 5: Maintaining the System (2)
– Depending on the project, maintenance costs can rise far

above the original cost of developing the system.
• IT systems for large companies (HR systems, Traveler’s

Insurance Claim-Agent system, POS systems, etc) require large
amounts of maintenance.

• Maintenance for commercial products (like Microsoft Word,
etc) is often rolled into a new release.

– The future maintenance needs of a system should be a
major concern during system design and development.

9

Software Lifecycles

• Now you have seen the phases that most large-
scale software projects go through.

• What do you think are the problems with using the
waterfall model of a software lifecycle?

(: no looking ahead :)

Software Lifecycles

• The waterfall model was used for many years, and
has proven to be a terrible model for software
development.
– Reason 1: All of the planning and design is done at the

beginning of the project.
• The problem is that during a two-year project (or even a two-

month project) user requirements often change.

• In the middle of development, a customer is likely to say “we
don’t need that any more, what we would really like is this….”

• This will happen! And the waterfall model has no way to deal
with this problem.

10

Software Lifecycles

– Reason 2: All of the testing is at the end of the project.
• A scenario: One entire year is spent coding a new system for a

new target platform. At the end of the implementation phase,
the work of 10 developers is combined to form a system with
500,000 lines of code. This code is largely untested.

• Result: CHAOS. Even good developers create bugs, and
combining code with other people always causes unanticipated
bugs. Debugging 500,000 lines of untested code is a
nightmare that may never end.

• There are tons of case studies of large software systems that
get to this stage and are cancelled or restarted from scratch.

Software Lifecycles

• Thus, we can’t realistically save all of the testing
until the end, and we also need to revisit the
requirements and design phases throughout the
product.

11

Software Lifecycles

• A number of software lifecycle models have been
introduced to deal with this problem
– Prototyping

– Iterative Development

– Spiral Model

• In each of these models, you cycle through
multiple iterations of requirements gathering,
design, implementation and testing. Like several
instances of the waterfall model!

