
Lecture 5

JAVA (46-935)

Somesh Jha

1

What is a socket?

� A socket is a two-way communication link
between two programs running on the network.

� A socket is bound to a port or an address so that
the network layer knows where to send the data.

2

Client-Server Concepts

� A server runs on a speci�c computer or a host
and has a socket that is bound to a speci�c port
number.

� A port is like the local address of the socket on
the host.

� A server just waits (listening on the socket) for a
a client to make a connection request.

3

A simple application

Reversed Line

Reversed LineLine
Line

Client

Server

Client

Figure 1: A simple Client-Server system

4

Client Program

package threadRelated;

import java.io.*;

import java.net.*;

public class Client {

public static final int DEFAULT_PORT = 6789;

public static void usage() {

System.out.println("Usage: java Client <hostname>[<port>]");

System.exit(0);

}

public static void main(String[] args) {

int port = DEFAULT_PORT;

Socket s = null;

PrintWriter out=null;

BufferedReader in = null;

//Parse the port specification

if ((args.length != 1) && (args.length != 2)) usage();

if (args.length == 1) port = DEFAULT_PORT;

else {

try {port = Integer.parseInt(args[1]); }

catch (NumberFormatException e) {usage();}

}

try {

//Create a socket to communicate to the specified host and port

s = new Socket(args[0],port);

//Create streams for reading and writing lines of text

// from and to this socket

5

InputStreamReader tempReader =

new InputStreamReader(s.getInputStream());

in = new BufferedReader(tempReader);

out = new PrintWriter(s.getOutputStream(),true);

BufferedReader bSystemIn =

new BufferedReader(new InputStreamReader(System.in));

//Tell the user that we've connected

System.out.println("Connected to "+s.getInetAddress()

+"."+s.getPort());

String line;

while(true) {

//print a prompt

System.out.print(">");

System.out.flush();

// read a line from the console; check for EOF

line = bSystemIn.readLine();

System.out.println("(Client) Read line : "+line);

if (line == null) break;

//Send it to the server

out.println(line);

out.flush();

//Read a line from the server

line = in.readLine();

//Check if connection is closed (i.e. for EOF)

if (line == null) {

System.out.println("Connection closed by server.");

break;

}

//And write the line to the console

System.out.println("Server says: "+line);

System.out.flush();

}

}

catch (UnknownHostException e) {

6

System.err.println("Couldn't find host "+args[0]);

}

catch (IOException e) {

System.err.println("Error in performing I/O: "+e.getMessage());

System.exit(1);

}

//Always be sure to close the sockets and the streams

finally {

try {

if(s != null) {

out.close();

in.close();

s.close();

}

}

catch (IOException e2) {

System.err.println("Error in closing streams and sockets ");

}

}

}

} //end of class Client

7

Client Program

� Pass the host name (on which the server is
running) and the port number to the main
program.

� If the port number is not passed, a default port
number is used.

� Try to create a connection with the server.

//Create a socket to communicate to the specified host and port

s = new Socket(args[0],port);

8

Client Program (contd)

� If the connection succeeds, we have socket (a
two way connection) between the client and the
server.

� Variable s contains the connection or the socket
between the client and the server.

�We will convert the connection or the socket into
input or output streams. The fragment of code
that does that is:

//Create streams for reading and writing lines of text

// from and to this socket

InputStreamReader tempReader =

new InputStreamReader(s.getInputStream());

in = new BufferedReader(tempReader);

out = new PrintWriter(s.getOutputStream(),true);

9

Client side I/O

�Whenever we read in we are actually reading
from the socket or the connection.

� If there is nothing to read, the statement blocks.

�Whenever we write to out we actually write to
the socket or the connection and hence the data
will reach the server.

10

While loop

� The client sits in a loop reading lines from the
screen.

� Each line that is read is sent to the server and
the answer (supposed to be the reversed line) is
read from the server response.

� The reversed line is output on the screen.

� If the client receives a null input, it exits.

11

�nally clause

� Notice the finally clause:

finally {

try {

if(s != null) {

out.close();

in.close();

s.close();

}

}

catch (IOException e2) {

System.err.println("Error in closing streams and sockets ");

}

}

� Recall that the finally clause is called when we
are exiting the try block (either because of an
exception or normally).

� It is good practice to close all the streams and
sockets before you exit the program or a method
(if they are not going to be used any where else).

12

Server code

package threadRelated;

import java.io.*;

import java.net.*;

public class Server extends Thread {

public final static int DEFAULT_PORT = 6789;

static final boolean DEBUG=true;

protected int port;

protected ServerSocket listen_socket;

//Exit with an error message, when an exception occurs

public static void fail(Exception e, String msg) {

System.err.println(msg+":"+e);

System.exit(1);

}

//Create a ServerSocket to listen for connections on; start the thread

public Server(int port) {

if (port == 0) port = DEFAULT_PORT;

this.port = port;

try {

listen_socket = new ServerSocket(port);

}

catch (IOException e) {

fail(e,"Exception creating server socket") ;

}

System.out.println("Server: listening on port "+port);

this.start();

}

13

//The body of the server thread. Loop forever, listening for and

//accepting connections from clients. For each connection,

//create a Connection object to handle communication through the

//new Socket

public void run() {

try {

while(true) {

Socket client_socket = listen_socket.accept();

Connection c = new Connection(client_socket);

}

}

catch (IOException e) { fail(e,"Exception while listening for connections");}

}

//Start the server up, listening on an optionally specified port

public static void main(String[] args) {

int port =0;

if (args.length == 1) {

try {port = Integer.parseInt(args[0]);}

catch (NumberFormatException e) { port=0; }

}

new Server(port);

}

}

//This class is the thread that handles all communication with a client

class Connection extends Thread {

static final boolean DEBUG=true;

protected Socket client;

protected PrintWriter out;

protected BufferedReader in;

14

//Initialize the streams and start the thread

public Connection(Socket client_socket) {

client = client_socket;

try {

in = new BufferedReader(new InputStreamReader(

client.getInputStream()));

out = new PrintWriter(client.getOutputStream(),true);

}

catch (IOException e) {

try { client.close(); }

catch (IOException e2) {; }

System.err.println("Exception while getting socket streams: "+e);

return;

}

this.start();

}

//Provide the service

//Read a line, reverse it send it back

public void run(){

String line;

try {

for(;;) {

if (DEBUG) {

System.out.println("Server ready to read ");

}

//read in a line

line = in.readLine();

if (DEBUG) {

System.out.println("Line read "+line);

}

if (line.equals("bye") ||

line == null) break;

StringBuffer bufferedLine = new StringBuffer(line);

String reversedLine = (bufferedLine.reverse()).toString();

if (DEBUG) {

System.out.println(" Reversed Line "+reversedLine);

}

15

out.println(reversedLine);

out.flush();

}//end of for

} // end of try

catch (IOException e) {; }

finally { try { client.close(); } catch(IOException e2) {;} }

}

}//end of Connection

16

Server loop

� After initialization, the server sits in an in�nite
loop listening for connections on the
ServerSocket listen socket.

while(true) {

Socket client_socket = listen_socket.accept();

Connection c = new Connection(client_socket);

}

� If a client is requesting a connection, the call
accept succeeds and returns a Socket.

� Socket client socket represents the connection
between the client and the server.

� A thread (Connection is thread) is spawned to
handle the connection between the client and
the server.

17

Server Loop (Contd)

� Notice that several clients could be connected to
the Server at the same time. Each connection
has a dedicated thread handling it.

� Notice that this is a classic application of
multi-threading. A server could be handling
multiple connections concurrently.

� By assigning priority to di�erent threads, the
server can assign priorities to di�erent clients.

18

Connection thread

� This thread makes streams out of the socket just
like in the case of the client.

� Each time in the while loop, server reads a line
from in, reverses it, and sends the reversed line
to the client by writing on the output stream
out.

� The fragment of code reversing a line is shown
below:

StringBuffer bufferedLine = new StringBuffer(line);

String reversedLine = (bufferedLine.reverse()).toString();

19

Connecting to the Web

� The URL class and the related classes
(URLConnection and URLEncoder) are more
appropriate than socket if one is connecting to a
web-site.

� In fact URLs are high-level connection to the Web

which uses sockets in its implementation.

20

