Lecture 4

JAVA (46-935)
Somesh Jha



Inner Classes

e Flashback to the AbstractTermStructure class.

e There was a SlowYieldVolObject which
computed:

— (¢ = 0) Difference between computed yield and
the market yield

— (otherwise) Difference between computed
volatility and the market volatility.

o Clumsy! The object used by the NewtonRaphson
solver belongs in the TermStructure class.

e Nobody else uses it.



Inner Classes (Contd)

e Put a YieldVolObject class inside the
TermStructure class.

e Nobody else except TermStructure class can use
the YieldVolObject.

e These are called member classes.

e There are other kind of inner classes. (Read
Chapter 5).



Code Fragment

/*%
Abstract class for building a BDT type interest-rate
model.
Qauthor Somesh Jha
*/

package interestRate;
import mathUtil.*;

public abstract class TermStructure {

private static final boolean DEBUG=false;

//time horizon
int T;

//Used by the Newton-Raphson solver
YieldVolObject slowYieldVolObj;
NewtonRaphson slowSolver;

//parameters of the BDT model
double r[];
double k[];

//bond yields and yield volatilities
//at time O

double yield[];

double volatilities[];

//nodes[i] points to link list of
//nodes with time i
LinkList nodes[];



class YieldVolObject extends AbstractFunctionObject {

//Y¥ield and volatality are computed for the
//bond of that maturity
public int maturity;

public YieldVolObject() {

//call the constructor for the super class
super(2);
}//end of constructor

//If i==0 calculate the yield and otherwise
//calculate the vol. Use values as value
//of r[t] and k[t]
public double evaluate(int i, double vall]l) {
r[maturity-1]=val[0];
k[maturity-1]=val[1];

if (i==0) {
double tempYield =slowYield(0,0,maturity);
return(tempYield-yield[maturity-1]);
}
else {
double tempVol = slowLogVol(0,0,maturity);
return(tempVol-volatilities [maturity-1]1);

¥
}//end of evaluate

}//end of YieldVolObject



Points to notice

e Notice that the class YieldVolObject is defined
inside the TermStructure class.

e Notice that YieldVolObject has complete access
to data of the TermStructure class.

e Nobody can access YieldVolObject from outside.



JAVA packages

e We have or will cover some classes from the

following packages:

— java.applet (Classes concerned with applets)

— java.awt (Classes concerned with GUISs)

— java.io (Classes concerned with 1/0)

— java.util (Classes concerned with various
utilities)

— java.net (Classes concerned with
networking)

e Whole list of packages given on page 86-89 in
the book.



JAVA 1/0 package

e We covered various kind of I/O streams.

e How to read and write to a file.

e A very wide variety of I/O provided by JAVA.



JAVA utlities package

e StingTokenizer is in the java.util package.

e Allows us to break a line into tokens for parsing.

e Consider the following fragment of code.

String line=’’hhh:xxx:ccc’’;

StringTokenizer tokenizer = new StringTokenizer(line,’’:’’);
String firstToken = tokenizer.nextToken() ;

String secondToken = tokenizer.nextToken();



Other interesting classes

e HashTable
e Date

e Random

e Vector

e Stack

e Read about them on page 527.

10



java.lang package

e This package is loaded up by default.

e String, Math, System, Double are all in this
package.

e Object and Exception are also defined in this
package.

e Read about it on page 442.

11



What is a thread?

e A Thread is a like a program.

e Two threads run independently like separate
programs.

e Difference is that threads run within a program
and hence can share variables.

12



Concurrent Programming

e Threads enable concurrent programming.

e T'wo separate tasks can be going on in parallel in
a single program.

e Let us say you enter the Bloomberg website.

13



Concurrent Programming (contd)

e The following tasks can be going on in parallel:

— Various indexes being displayed in a box.
— Hot news ticker.

— Asking the user to enter a stock symbol.

e All these separate tasks could be handled by
separate threads.

14



A small example

package threadRelated;

public class MyThread extends Thread {

public MyThread(String name) {

super (name) ;
}//end of MyThread

public void run() {

for(int i=0; i < 10; i++) {
System.out.println(i+" "+getName());
try {
sleep((int)Math.random()*1000);
} catch (InterruptedException e) {};

+
System.out.println("DONE! "+getName()) ;
}//end of run

}//end of MyThread

15



Constructor

e A thread class extends the JAVA class Thread
defined in the package java.lang.

e The constructor takes the name of thread as an
argument.

e What does super (name) do?

16



run method

e Whenever a thread is started, run method is
called.

e The run method in this case goes through the
loop 10 times.

e sleep((int)Math.random()*1000) suspends
the thread for a random time.

e What is Math.random()?

o getName () gets the name of the thread.

17



Main Program

package threadRelated;

public class testMyThread {

static public void main(String argv[]) {

MyThread threadl
MyThread thread2

new MyThread("put");
new MyThread('call");

threadl.start();
thread2.start();

18



Main Program (Contd).

e There are two threads: threadl and thread?2.

e First thread has name put and the second one
call.

e The start method on the thread starts the
thread.

19



When does a thread stop?

e A thread stops when either of the following
events happen:

— run method exits.

— stop method is called on the thread.

20



Output of the program

put
call
call
put
put
call
put
call
put
put
call
call
put
call
put
call
put
call
put
call
DONE! put
DONE! call

© W 00 00 N ~NO O Ul O WWNNNEFE =, OO

21



Synchronization

e Suppose that there are two threads 1'1 and 72
that share two variables ¢ and j.

e Suppose each thread increments ¢ and then
increments j by the value of 1.

e We can have two sample executions shown on
the next slide.

22



Two executions

Initial wvalue
i=1 j=1

First exceution

i = i+1 (T1 executes)
j = j+i (T2 executes)
i = i+1 (T2 executes)
j = j+i (T1 exceutes)

Second execution

i = i+1 (T1 executes)
j = j+i (T1 executes)
i = i+1 (T2 executes)
j = j+i (T2 executes)

23



Inconsistency!

e First Exceution
T'1 observes 3 = 6.

e Second Exceution
T'1 observes 3 = 3.

e Need to control access to shared variables.

e Answer: Synchronization

24



Toy Trading System

e Each trader enters the transaction he/she just
made.

e A producer thread reads the transaction record
and puts in a queue.

e Consumer threads read records from the queue
and log it.

25



Toy Trading Example (Fig)

Consumer 1 Consumer 2

log
log N _____ -
Trader -

Queue

—_—

Producer

Figure 1: A Toy Trading System

26



Producer Thread

package threadRelated;
import java.io.*;
public class ProducerThread extends Thread {

Queue myQueue;
BufferedReader bSystemIn;
public ProducerThread(String name, Queue q) {
super (name) ;
myQueue = q;
bSystemIn = new BufferedReader(new InputStreamReader(System.in));

¥

public void run() {

try {
String line;
while ((line
TraderEntry tEntry
myQueue.add (tEntry) ;
}//end of while
+
catch (IOException e) {
System.err.println("Exception occured "+e.getMessage());

¥

bSystemIn.readlLine()) !'= null) {
new TraderEntry(line);

}//end of run
¥

27



Constructor

e Constructor takes:

— Name of the thread.

— The queue to put things in.

28



run method

e Reads a line from the screen.

e Makes that line into a trader-entry.

e Adds that trader-entry to the queue.

29



TraderEntry

package threadRelated;
import java.util.x*;
public class TraderEntry {

//put, call,...
String transactionType;

//price and amount
double price, amount;

static final int NO_OF_ENTRIES=5;
String counterParty;
String comments;

public TraderEntry(String tType, double p,
double a, String cP,
String co) {
transactionType = tType;
price = p;
amount = a;
counterParty = cP;
comments = coj;
}//end of first constructor

public TraderEntry(String line) {
StringTokenizer tokenizer = new StringTokenizer(line);
if (tokenizer.countTokens() == NO_OF_ENTRIES) {
transactionType = tokenizer.nextToken();
price = Double.valueOf (tokenizer.nextToken()) .doubleValue();
amount = Double.valueOf (tokenizer.nextToken()).doubleValue();

30



counterParty = tokenizer.nextToken();
comments = tokenizer.nextToken();

+
}//end of TraderEntry

public String toString() {

StringBuffer result=new StringBuffer(transactionType);

result = result.append(" : ");

result = result.append(price);

result = result.append(" : ");

result = result.append(amount);
result = result.append(" : ");

result = result.append(counterParty);
result = result.append(" : ");

result = result.append(comments);
return(result.toString());
}//end of toString()

}//end of TraderEntry

31



Constructors

e First Constructor
This constructor takes all five arguments
explicitly.

e Second Constructor
Second constructor takes a string and parses the
entries out of that.

32



toString method

e Notice the use of StringBuffer in this method.

e This class represents a string of characters.

e A StringBuffer object grows as things are
appended to it.

33



ConsumerThread

package threadRelated;
public class ConsumerThread extends Thread {

Queue myQueue;

public ConsumerThread(String name, Queue q) {
super (name) ;
myQueue = q;

+
public void run() {
while(true) {
TraderEntry tEntry = (TraderEntry)myQueue.delete();
System.out.print("Consumer <"+getName()+"> ");

System.out.println(tEntry) ;
+

}//end of run

34



Constructor

e Same as the producer thread.

35



run method

e (Goes on forever.

e Each time in the loop it gets an entry from the
queue.

e Prints it out on the screen.

e What happens in the following statement?

System.out.println(tEntry) ;

36



Main program

package threadRelated;

import java.io.*;

public class testProducerConsumer {

static public void main(String argv[]) {

String line;
Queue entryQueue = new Queue(1000);
ProducerThread prod = new ProducerThread("producer',entryQueue);
ConsumerThread consumerl = new ConsumerThread('consume-1'",entryQueue);
ConsumerThread consumer2 = new ConsumerThread('consume-2'",entryQueue);
prod.start();

consumeril.start();
consumer2.start();

}//end of main
¥

37



Main program

e Has one producer thread prod.

e Has two consumer threads consumer1 and
consumer?2.

e Starts the three threads.

38



Queue shared

e Notice that the queue entryQueue is shared
between the three threads.

e Need to synchronize access to the queue.

e Only one thread should be accessing the queue
object at any time.

39



Queue is empty

e What if a consumer thread wants to get a
trader-entry and the queue is empty?

e Consumer thread should go into a waz:t state.

e When a producer thread puts something in the

queue, it should notify the waiting consumer
thread.

e Analogous situation happens when the queue is
full.

40



Queue class

package threadRelated;
public class Queue {

int size;

private Object datal]l;

int front, back;

private boolean empty, full;

public Queue(int size) {
this.size = size;
data = new Object[size];
front=back=0 ;
empty=true;
full=false;

}//end of Queue

private boolean isEmpty() {
return(empty) ;

¥

private boolean isFull() {
return(full);
b

public synchronized void add(Object obj) {
while (isFull()) {
try {

wait();
}

41



catch (InterruptedException e) {

¥
}//end of while

boolean wasEmpty = isEmpty();

//queue has space

data[front]=obj;

if ((front+1)ysize == back) full=true;
front = (front+1)Ysize;

empty=false;

if (wasEmpty) notifyAll();

}//end of add

public synchronized Object delete() {
while (isEmpty()) {
try {
wait();

+
catch (InterruptedException e) {

¥
}//end of while

boolean wasFull = isFull();

Object obj=datalback];

if ((back+1)lsize == front) empty=true;
back = (back+1)Ysize;

full=false;

if (wasFull) notifyAll();

return(obj);

}//end of delete

public synchronized String toString() {
String result=" ";

42



if ('isEmpty() ) {
for(int i=back; i '= front; i=(i+1)¥size) {
result = result + datal[i].toString();
result= result+" \n";

}
}//end of if
return(result);
}//end of toString

}//end of Queue

43



Queue class

e Implements a circular queue.

e Figure out the logic.

e The variable size holds the size of the queue.

44



delete method

e Deletes an object from the end of the queue and
returns it.

e Notice the definition.

public synchronized Object delete()

e This means that a thread has to acquire the
unique lock associated with this object before it
can execute the delete method.

45



delete method (Contd.)

e Suppose the consumerl thread executes the
delete method and acquires the lock.

e Now suppose the prod thread executes the add
method.

e The thread prod blocks because the lock
associated with the queue object is with the
thread consumeri.

46



Waiting

e Suppose thread consumer2 executes the method
delete to get a trader-entry.

e Suppose the queue is empty.

e Thread consumer2 puts itself in the wait state
using the following fragment of code:

while (isEmpty()) {
try {
wait () ;

+
catch (InterruptedException e) {

+
}//end of while

47



Who wakes it up?

e Recall that consumer?2 is waiting.

e When the producer thread prod puts stuft in the
queue and it was empty, it notifies the waiting
threads.

e The fragment of code that does this is:

if (wasEmpty) notifyAll();

48



Client-Server Programming

e Server runs on a known host and a port.

e Has all the heavy-weight stuff in it.

— Databases with historical data.

— Complicated functionality (pricing and PDE
code).

49



Client

e Client 1s a light-weight program that uses the
server.

e Generally, the client knows the host and the port
to connect to the server.

e Sockets enable client-server programming in

JAVA.

50



Client-Server

e Most web-based services are client-server
programs.

e Large risk-management tools (e.g., Infinity) are
also client-server programs.

e JAVA makes client-server programming
especially easy.

51



