
Lecture 4

JAVA (46-935)

Somesh Jha

1

Inner Classes

� Flashback to the AbstractTermStructure class.

� There was a SlowYieldVolObject which
computed:

{ (i = 0) Di�erence between computed yield and
the market yield

{ (otherwise) Di�erence between computed

volatility and the market volatility.

� Clumsy! The object used by the NewtonRaphson
solver belongs in the TermStructure class.

� Nobody else uses it.

2

Inner Classes (Contd)

� Put a YieldVolObject class inside the
TermStructure class.

� Nobody else except TermStructure class can use
the YieldVolObject.

� These are called member classes.

� There are other kind of inner classes. (Read
Chapter 5).

3

Code Fragment

/**

Abstract class for building a BDT type interest-rate

model.

@author Somesh Jha

*/

package interestRate;

import mathUtil.*;

public abstract class TermStructure {

private static final boolean DEBUG=false;

//time horizon

int T;

//Used by the Newton-Raphson solver

YieldVolObject slowYieldVolObj;

NewtonRaphson slowSolver;

//parameters of the BDT model

double r[];

double k[];

//bond yields and yield volatilities

//at time 0

double yield[];

double volatilities[];

//nodes[i] points to link list of

//nodes with time i

LinkList nodes[];

4

class YieldVolObject extends AbstractFunctionObject {

//Yield and volatality are computed for the

//bond of that maturity

public int maturity;

public YieldVolObject() {

//call the constructor for the super class

super(2);

}//end of constructor

//If i==0 calculate the yield and otherwise

//calculate the vol. Use values as value

//of r[t] and k[t]

public double evaluate(int i, double val[]) {

r[maturity-1]=val[0];

k[maturity-1]=val[1];

if (i==0) {

double tempYield =slowYield(0,0,maturity);

return(tempYield-yield[maturity-1]);

}

else {

double tempVol = slowLogVol(0,0,maturity);

return(tempVol-volatilities[maturity-1]);

}

}//end of evaluate

}//end of YieldVolObject

5

Points to notice

� Notice that the class YieldVolObject is de�ned
inside the TermStructure class.

� Notice that YieldVolObject has complete access
to data of the TermStructure class.

� Nobody can access YieldVolObject from outside.

6

JAVA packages

�We have or will cover some classes from the
following packages:

{ java.applet (Classes concerned with applets)

{ java.awt (Classes concerned with GUIs)

{ java.io (Classes concerned with I/O)

{ java.util (Classes concerned with various
utilities)

{ java.net (Classes concerned with
networking)

�Whole list of packages given on page 86-89 in
the book.

7

JAVA I/O package

�We covered various kind of I/O streams.

� How to read and write to a �le.

� A very wide variety of I/O provided by JAVA.

8

JAVA utlities package

� StingTokenizer is in the java.util package.

� Allows us to break a line into tokens for parsing.

� Consider the following fragment of code.

String line=''hhh:xxx:ccc'';

StringTokenizer tokenizer = new StringTokenizer(line,'':'');

String firstToken = tokenizer.nextToken();

String secondToken = tokenizer.nextToken();

9

Other interesting classes

� HashTable

� Date

� Random

� Vector

� Stack

� Read about them on page 527.

10

java.lang package

� This package is loaded up by default.

� String, Math, System, Double are all in this
package.

� Object and Exception are also de�ned in this
package.

� Read about it on page 442.

11

What is a thread?

� A Thread is a like a program.

� Two threads run independently like separate
programs.

� Di�erence is that threads run within a program
and hence can share variables.

12

Concurrent Programming

� Threads enable concurrent programming.

� Two separate tasks can be going on in parallel in
a single program.

� Let us say you enter the Bloomberg website.

13

Concurrent Programming (contd)

� The following tasks can be going on in parallel:

{ Various indexes being displayed in a box.

{ Hot news ticker.

{ Asking the user to enter a stock symbol.

� All these separate tasks could be handled by
separate threads.

14

A small example

package threadRelated;

public class MyThread extends Thread {

public MyThread(String name) {

super(name);

}//end of MyThread

public void run() {

for(int i=0; i < 10; i++) {

System.out.println(i+" "+getName());

try {

sleep((int)Math.random()*1000);

} catch (InterruptedException e) {};

}

System.out.println("DONE! "+getName());

}//end of run

}//end of MyThread

15

Constructor

� A thread class extends the JAVA class Thread
de�ned in the package java.lang.

� The constructor takes the name of thread as an
argument.

�What does super(name) do?

16

run method

�Whenever a thread is started, run method is
called.

� The run method in this case goes through the
loop 10 times.

� sleep((int)Math.random()*1000) suspends

the thread for a random time.

�What is Math.random()?

� getName() gets the name of the thread.

17

Main Program

package threadRelated;

public class testMyThread {

static public void main(String argv[]) {

MyThread thread1 = new MyThread("put");

MyThread thread2 = new MyThread("call");

thread1.start();

thread2.start();

}

}

18

Main Program (Contd).

� There are two threads: thread1 and thread2.

� First thread has name put and the second one
call.

� The start method on the thread starts the
thread.

19

When does a thread stop?

� A thread stops when either of the following
events happen:

{ run method exits.

{ stop method is called on the thread.

20

Output of the program

0 put

0 call

1 call

1 put

2 put

2 call

3 put

3 call

4 put

5 put

4 call

5 call

6 put

6 call

7 put

7 call

8 put

8 call

9 put

9 call

DONE! put

DONE! call

21

Synchronization

� Suppose that there are two threads T1 and T2
that share two variables i and j.

� Suppose each thread increments i and then
increments j by the value of i.

�We can have two sample executions shown on
the next slide.

22

Two executions

Initial value

i=1 j=1

First exceution

i = i+1 (T1 executes)

j = j+i (T2 executes)

i = i+1 (T2 executes)

j = j+i (T1 exceutes)

Second execution

i = i+1 (T1 executes)

j = j+i (T1 executes)

i = i+1 (T2 executes)

j = j+i (T2 executes)

23

Inconsistency!

� First Exceution

T1 observes j = 6.

� Second Exceution

T1 observes j = 3.

� Need to control access to shared variables.

� Answer: Synchronization

24

Toy Trading System

� Each trader enters the transaction he/she just
made.

� A producer thread reads the transaction record
and puts in a queue.

� Consumer threads read records from the queue
and log it.

25

Toy Trading Example (Fig)

Trader
log

log

Consumer 1 Consumer 2

Producer

Queue

Figure 1: A Toy Trading System

26

Producer Thread

package threadRelated;

import java.io.*;

public class ProducerThread extends Thread {

Queue myQueue;

BufferedReader bSystemIn;

public ProducerThread(String name, Queue q) {

super(name);

myQueue = q;

bSystemIn = new BufferedReader(new InputStreamReader(System.in));

}

public void run() {

try {

String line;

while ((line = bSystemIn.readLine()) != null) {

TraderEntry tEntry = new TraderEntry(line);

myQueue.add(tEntry);

}//end of while

}

catch (IOException e) {

System.err.println("Exception occured "+e.getMessage());

}

}//end of run

}

27

Constructor

� Constructor takes:

{ Name of the thread.

{ The queue to put things in.

28

run method

� Reads a line from the screen.

�Makes that line into a trader-entry.

� Adds that trader-entry to the queue.

29

TraderEntry

package threadRelated;

import java.util.*;

public class TraderEntry {

//put, call,...

String transactionType;

//price and amount

double price, amount;

static final int NO_OF_ENTRIES=5;

String counterParty;

String comments;

public TraderEntry(String tType, double p,

double a, String cP,

String co) {

transactionType = tType;

price = p;

amount = a;

counterParty = cP;

comments = co;

}//end of first constructor

public TraderEntry(String line) {

StringTokenizer tokenizer = new StringTokenizer(line);

if (tokenizer.countTokens() == NO_OF_ENTRIES) {

transactionType = tokenizer.nextToken();

price = Double.valueOf(tokenizer.nextToken()).doubleValue();

amount = Double.valueOf(tokenizer.nextToken()).doubleValue();

30

counterParty = tokenizer.nextToken();

comments = tokenizer.nextToken();

}

}//end of TraderEntry

public String toString() {

StringBuffer result=new StringBuffer(transactionType);

result = result.append(" : ");

result = result.append(price);

result = result.append(" : ");

result = result.append(amount);

result = result.append(" : ");

result = result.append(counterParty);

result = result.append(" : ");

result = result.append(comments);

return(result.toString());

}//end of toString()

}//end of TraderEntry

31

Constructors

� First Constructor

This constructor takes all �ve arguments
explicitly.

� Second Constructor

Second constructor takes a string and parses the
entries out of that.

32

toString method

� Notice the use of StringBuffer in this method.

� This class represents a string of characters.

� A StringBuffer object grows as things are
appended to it.

33

ConsumerThread

package threadRelated;

public class ConsumerThread extends Thread {

Queue myQueue;

public ConsumerThread(String name, Queue q) {

super(name);

myQueue = q;

}

public void run() {

while(true) {

TraderEntry tEntry = (TraderEntry)myQueue.delete();

System.out.print("Consumer <"+getName()+"> ");

System.out.println(tEntry);

}

}//end of run

}

34

Constructor

� Same as the producer thread.

35

run method

� Goes on forever.

� Each time in the loop it gets an entry from the
queue.

� Prints it out on the screen.

�What happens in the following statement?

System.out.println(tEntry);

36

Main program

package threadRelated;

import java.io.*;

public class testProducerConsumer {

static public void main(String argv[]) {

String line;

Queue entryQueue = new Queue(1000);

ProducerThread prod = new ProducerThread("producer",entryQueue);

ConsumerThread consumer1 = new ConsumerThread("consume-1",entryQueue);

ConsumerThread consumer2 = new ConsumerThread("consume-2",entryQueue);

prod.start();

consumer1.start();

consumer2.start();

}//end of main

}

37

Main program

� Has one producer thread prod.

� Has two consumer threads consumer1 and
consumer2.

� Starts the three threads.

38

Queue shared

� Notice that the queue entryQueue is shared
between the three threads.

� Need to synchronize access to the queue.

� Only one thread should be accessing the queue
object at any time.

39

Queue is empty

�What if a consumer thread wants to get a
trader-entry and the queue is empty?

� Consumer thread should go into a wait state.

�When a producer thread puts something in the
queue, it should notify the waiting consumer
thread.

� Analogous situation happens when the queue is
full.

40

Queue class

package threadRelated;

public class Queue {

int size;

private Object data[];

int front, back;

private boolean empty, full;

public Queue(int size) {

this.size = size;

data = new Object[size];

front=back=0 ;

empty=true;

full=false;

}//end of Queue

private boolean isEmpty() {

return(empty);

}

private boolean isFull() {

return(full);

}

public synchronized void add(Object obj) {

while (isFull()) {

try {

wait();

}

41

catch (InterruptedException e) {

}

}//end of while

boolean wasEmpty = isEmpty();

//queue has space

data[front]=obj;

if ((front+1)%size == back) full=true;

front = (front+1)%size;

empty=false;

if (wasEmpty) notifyAll();

}//end of add

public synchronized Object delete() {

while (isEmpty()) {

try {

wait();

}

catch (InterruptedException e) {

}

}//end of while

boolean wasFull = isFull();

Object obj=data[back];

if ((back+1)%size == front) empty=true;

back = (back+1)%size;

full=false;

if (wasFull) notifyAll();

return(obj);

}//end of delete

public synchronized String toString() {

String result=" ";

42

if (!isEmpty()) {

for(int i=back; i != front; i=(i+1)%size) {

result = result + data[i].toString();

result= result+" \n";

}

}//end of if

return(result);

}//end of toString

}//end of Queue

43

Queue class

� Implements a circular queue.

� Figure out the logic.

� The variable size holds the size of the queue.

44

delete method

� Deletes an object from the end of the queue and
returns it.

� Notice the de�nition.

public synchronized Object delete()

� This means that a thread has to acquire the
unique lock associated with this object before it
can execute the delete method.

45

delete method (Contd.)

� Suppose the consumer1 thread executes the
delete method and acquires the lock.

� Now suppose the prod thread executes the add
method.

� The thread prod blocks because the lock
associated with the queue object is with the
thread consumer1.

46

Waiting

� Suppose thread consumer2 executes the method
delete to get a trader-entry.

� Suppose the queue is empty.

� Thread consumer2 puts itself in the wait state
using the following fragment of code:

while (isEmpty()) {

try {

wait();

}

catch (InterruptedException e) {

}

}//end of while

47

Who wakes it up?

� Recall that consumer2 is waiting.

�When the producer thread prod puts stu� in the
queue and it was empty, it noti�es the waiting
threads.

� The fragment of code that does this is:

if (wasEmpty) notifyAll();

48

Client-Server Programming

� Server runs on a known host and a port.

� Has all the heavy-weight stu� in it.

{ Databases with historical data.

{ Complicated functionality (pricing and PDE
code).

49

Client

� Client is a light-weight program that uses the
server.

� Generally, the client knows the host and the port
to connect to the server.

� Sockets enable client-server programming in
JAVA.

50

Client-Server

�Most web-based services are client-server
programs.

� Large risk-management tools (e.g., In�nity) are
also client-server programs.

� JAVA makes client-server programming
especially easy.

51

