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Inner Classes

e Flashback to the AbstractTermStructure class.

e There was a SlowYieldVolObject which
computed:

— (¢ = 0) Difference between computed yield and
the market yield

— (otherwise) Difference between computed
volatility and the market volatility.

o Clumsy! The object used by the NewtonRaphson
solver belongs in the TermStructure class.

e Nobody else uses it.



Inner Classes (Contd)

e Put a YieldVolObject class inside the
TermStructure class.

e Nobody else except TermStructure class can use
the YieldVolObject.

e These are called member classes.

e There are other kind of inner classes. (Read
Chapter 5).



Code Fragment

/*%
Abstract class for building a BDT type interest-rate
model.
Qauthor Somesh Jha
*/

package interestRate;
import mathUtil.*;

public abstract class TermStructure {

private static final boolean DEBUG=false;

//time horizon
int T;

//Used by the Newton-Raphson solver
YieldVolObject slowYieldVolObj;
NewtonRaphson slowSolver;

//parameters of the BDT model
double r[];
double k[];

//bond yields and yield volatilities
//at time O

double yield[];

double volatilities[];

//nodes[i] points to link list of
//nodes with time i
LinkList nodes[];



class YieldVolObject extends AbstractFunctionObject {

//Y¥ield and volatality are computed for the
//bond of that maturity
public int maturity;

public YieldVolObject() {

//call the constructor for the super class
super(2);
}//end of constructor

//If i==0 calculate the yield and otherwise
//calculate the vol. Use values as value
//of r[t] and k[t]
public double evaluate(int i, double vall]l) {
r[maturity-1]=val[0];
k[maturity-1]=val[1];

if (i==0) {
double tempYield =slowYield(0,0,maturity);
return(tempYield-yield[maturity-1]);
}
else {
double tempVol = slowLogVol(0,0,maturity);
return(tempVol-volatilities [maturity-1]1);

¥
}//end of evaluate

}//end of YieldVolObject



Points to notice

e Notice that the class YieldVolObject is defined
inside the TermStructure class.

e Notice that YieldVolObject has complete access
to data of the TermStructure class.

e Nobody can access YieldVolObject from outside.



JAVA packages

e We have or will cover some classes from the

following packages:

— java.applet (Classes concerned with applets)

— java.awt (Classes concerned with GUISs)

— java.io (Classes concerned with 1/0)

— java.util (Classes concerned with various
utilities)

— java.net (Classes concerned with
networking)

e Whole list of packages given on page 86-89 in
the book.



JAVA 1/0 package

e We covered various kind of I/O streams.

e How to read and write to a file.

e A very wide variety of I/O provided by JAVA.



JAVA utlities package

e StingTokenizer is in the java.util package.

e Allows us to break a line into tokens for parsing.

e Consider the following fragment of code.

String line=’’hhh:xxx:ccc’’;

StringTokenizer tokenizer = new StringTokenizer(line,’’:’’);
String firstToken = tokenizer.nextToken() ;

String secondToken = tokenizer.nextToken();



Other interesting classes

e HashTable
e Date

e Random

e Vector

e Stack

e Read about them on page 527.
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java.lang package

e This package is loaded up by default.

e String, Math, System, Double are all in this
package.

e Object and Exception are also defined in this
package.

e Read about it on page 442.

11



What is a thread?

e A Thread is a like a program.

e Two threads run independently like separate
programs.

e Difference is that threads run within a program
and hence can share variables.
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Concurrent Programming

e Threads enable concurrent programming.

e T'wo separate tasks can be going on in parallel in
a single program.

e Let us say you enter the Bloomberg website.
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Concurrent Programming (contd)

e The following tasks can be going on in parallel:

— Various indexes being displayed in a box.
— Hot news ticker.

— Asking the user to enter a stock symbol.

e All these separate tasks could be handled by
separate threads.
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A small example

package threadRelated;

public class MyThread extends Thread {

public MyThread(String name) {

super (name) ;
}//end of MyThread

public void run() {

for(int i=0; i < 10; i++) {
System.out.println(i+" "+getName());
try {
sleep((int)Math.random()*1000);
} catch (InterruptedException e) {};

+
System.out.println("DONE! "+getName()) ;
}//end of run

}//end of MyThread
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Constructor

e A thread class extends the JAVA class Thread
defined in the package java.lang.

e The constructor takes the name of thread as an
argument.

e What does super (name) do?

16



run method

e Whenever a thread is started, run method is
called.

e The run method in this case goes through the
loop 10 times.

e sleep((int)Math.random()*1000) suspends
the thread for a random time.

e What is Math.random()?

o getName () gets the name of the thread.
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Main Program

package threadRelated;

public class testMyThread {

static public void main(String argv[]) {

MyThread threadl
MyThread thread2

new MyThread("put");
new MyThread('call");

threadl.start();
thread2.start();
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Main Program (Contd).

e There are two threads: threadl and thread?2.

e First thread has name put and the second one
call.

e The start method on the thread starts the
thread.
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When does a thread stop?

e A thread stops when either of the following
events happen:

— run method exits.

— stop method is called on the thread.
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Output of the program

put
call
call
put
put
call
put
call
put
put
call
call
put
call
put
call
put
call
put
call
DONE! put
DONE! call
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Synchronization

e Suppose that there are two threads 1'1 and 72
that share two variables ¢ and j.

e Suppose each thread increments ¢ and then
increments j by the value of 1.

e We can have two sample executions shown on
the next slide.
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Two executions

Initial wvalue
i=1 j=1

First exceution

i = i+1 (T1 executes)
j = j+i (T2 executes)
i = i+1 (T2 executes)
j = j+i (T1 exceutes)

Second execution

i = i+1 (T1 executes)
j = j+i (T1 executes)
i = i+1 (T2 executes)
j = j+i (T2 executes)
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Inconsistency!

e First Exceution
T'1 observes 3 = 6.

e Second Exceution
T'1 observes 3 = 3.

e Need to control access to shared variables.

e Answer: Synchronization
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Toy Trading System

e Each trader enters the transaction he/she just
made.

e A producer thread reads the transaction record
and puts in a queue.

e Consumer threads read records from the queue
and log it.
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Toy Trading Example (Fig)

Consumer 1 Consumer 2

log
log N _____ -
Trader -

Queue

—_—

Producer

Figure 1: A Toy Trading System
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Producer Thread

package threadRelated;
import java.io.*;
public class ProducerThread extends Thread {

Queue myQueue;
BufferedReader bSystemIn;
public ProducerThread(String name, Queue q) {
super (name) ;
myQueue = q;
bSystemIn = new BufferedReader(new InputStreamReader(System.in));

¥

public void run() {

try {
String line;
while ((line
TraderEntry tEntry
myQueue.add (tEntry) ;
}//end of while
+
catch (IOException e) {
System.err.println("Exception occured "+e.getMessage());

¥

bSystemIn.readlLine()) !'= null) {
new TraderEntry(line);

}//end of run
¥
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Constructor

e Constructor takes:

— Name of the thread.

— The queue to put things in.
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run method

e Reads a line from the screen.

e Makes that line into a trader-entry.

e Adds that trader-entry to the queue.
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TraderEntry

package threadRelated;
import java.util.x*;
public class TraderEntry {

//put, call,...
String transactionType;

//price and amount
double price, amount;

static final int NO_OF_ENTRIES=5;
String counterParty;
String comments;

public TraderEntry(String tType, double p,
double a, String cP,
String co) {
transactionType = tType;
price = p;
amount = a;
counterParty = cP;
comments = coj;
}//end of first constructor

public TraderEntry(String line) {
StringTokenizer tokenizer = new StringTokenizer(line);
if (tokenizer.countTokens() == NO_OF_ENTRIES) {
transactionType = tokenizer.nextToken();
price = Double.valueOf (tokenizer.nextToken()) .doubleValue();
amount = Double.valueOf (tokenizer.nextToken()).doubleValue();
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counterParty = tokenizer.nextToken();
comments = tokenizer.nextToken();

+
}//end of TraderEntry

public String toString() {

StringBuffer result=new StringBuffer(transactionType);

result = result.append(" : ");

result = result.append(price);

result = result.append(" : ");

result = result.append(amount);
result = result.append(" : ");

result = result.append(counterParty);
result = result.append(" : ");

result = result.append(comments);
return(result.toString());
}//end of toString()

}//end of TraderEntry
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Constructors

e First Constructor
This constructor takes all five arguments
explicitly.

e Second Constructor
Second constructor takes a string and parses the
entries out of that.
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toString method

e Notice the use of StringBuffer in this method.

e This class represents a string of characters.

e A StringBuffer object grows as things are
appended to it.
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ConsumerThread

package threadRelated;
public class ConsumerThread extends Thread {

Queue myQueue;

public ConsumerThread(String name, Queue q) {
super (name) ;
myQueue = q;

+
public void run() {
while(true) {
TraderEntry tEntry = (TraderEntry)myQueue.delete();
System.out.print("Consumer <"+getName()+"> ");

System.out.println(tEntry) ;
+

}//end of run
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Constructor

e Same as the producer thread.
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run method

e (Goes on forever.

e Each time in the loop it gets an entry from the
queue.

e Prints it out on the screen.

e What happens in the following statement?

System.out.println(tEntry) ;
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Main program

package threadRelated;

import java.io.*;

public class testProducerConsumer {

static public void main(String argv[]) {

String line;
Queue entryQueue = new Queue(1000);
ProducerThread prod = new ProducerThread("producer',entryQueue);
ConsumerThread consumerl = new ConsumerThread('consume-1'",entryQueue);
ConsumerThread consumer2 = new ConsumerThread('consume-2'",entryQueue);
prod.start();

consumeril.start();
consumer2.start();

}//end of main
¥
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Main program

e Has one producer thread prod.

e Has two consumer threads consumer1 and
consumer?2.

e Starts the three threads.
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Queue shared

e Notice that the queue entryQueue is shared
between the three threads.

e Need to synchronize access to the queue.

e Only one thread should be accessing the queue
object at any time.
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Queue is empty

e What if a consumer thread wants to get a
trader-entry and the queue is empty?

e Consumer thread should go into a waz:t state.

e When a producer thread puts something in the

queue, it should notify the waiting consumer
thread.

e Analogous situation happens when the queue is
full.
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Queue class

package threadRelated;
public class Queue {

int size;

private Object datal]l;

int front, back;

private boolean empty, full;

public Queue(int size) {
this.size = size;
data = new Object[size];
front=back=0 ;
empty=true;
full=false;

}//end of Queue

private boolean isEmpty() {
return(empty) ;

¥

private boolean isFull() {
return(full);
b

public synchronized void add(Object obj) {
while (isFull()) {
try {

wait();
}
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catch (InterruptedException e) {

¥
}//end of while

boolean wasEmpty = isEmpty();

//queue has space

data[front]=obj;

if ((front+1)ysize == back) full=true;
front = (front+1)Ysize;

empty=false;

if (wasEmpty) notifyAll();

}//end of add

public synchronized Object delete() {
while (isEmpty()) {
try {
wait();

+
catch (InterruptedException e) {

¥
}//end of while

boolean wasFull = isFull();

Object obj=datalback];

if ((back+1)lsize == front) empty=true;
back = (back+1)Ysize;

full=false;

if (wasFull) notifyAll();

return(obj);

}//end of delete

public synchronized String toString() {
String result=" ";
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if ('isEmpty() ) {
for(int i=back; i '= front; i=(i+1)¥size) {
result = result + datal[i].toString();
result= result+" \n";

}
}//end of if
return(result);
}//end of toString

}//end of Queue
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Queue class

e Implements a circular queue.

e Figure out the logic.

e The variable size holds the size of the queue.
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delete method

e Deletes an object from the end of the queue and
returns it.

e Notice the definition.

public synchronized Object delete()

e This means that a thread has to acquire the
unique lock associated with this object before it
can execute the delete method.
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delete method (Contd.)

e Suppose the consumerl thread executes the
delete method and acquires the lock.

e Now suppose the prod thread executes the add
method.

e The thread prod blocks because the lock
associated with the queue object is with the
thread consumeri.
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Waiting

e Suppose thread consumer2 executes the method
delete to get a trader-entry.

e Suppose the queue is empty.

e Thread consumer2 puts itself in the wait state
using the following fragment of code:

while (isEmpty()) {
try {
wait () ;

+
catch (InterruptedException e) {

+
}//end of while
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Who wakes it up?

e Recall that consumer?2 is waiting.

e When the producer thread prod puts stuft in the
queue and it was empty, it notifies the waiting
threads.

e The fragment of code that does this is:

if (wasEmpty) notifyAll();
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Client-Server Programming

e Server runs on a known host and a port.

e Has all the heavy-weight stuff in it.

— Databases with historical data.

— Complicated functionality (pricing and PDE
code).
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Client

e Client 1s a light-weight program that uses the
server.

e Generally, the client knows the host and the port
to connect to the server.

e Sockets enable client-server programming in

JAVA.
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Client-Server

e Most web-based services are client-server
programs.

e Large risk-management tools (e.g., Infinity) are
also client-server programs.

e JAVA makes client-server programming
especially easy.
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