
Lecture 3

JAVA (46-935)

Somesh Jha

1

Overview of BDT

� Assume we are interested in building an interest
rate tree upto time horizon T .

� Let Bt be the bond maturing at time t

(1 � t � T + 1).

�We use the binomial lattice. Each node is
represented as (t; U), where t is the time and U

is the number of up-ticks on the path from the
root to that node.

2

BDT (Contd)

� For each time t (1 � t � T) we have two
parameters rt and kt.

� The short rate r(t; U) at node (t; U) is given by
a function

F (t; U; rt; kt)

�We assume that yields and the yield volatilities
are given to us.

3

Algorithm

� Set the initial short rate r(0; 0) to the yield of
the bond B1.

� Induction step.

{ Assume: We know the short rate for time
less than t.

{ The yield and the yield volatilities of bond
Bt+1 are a function of the parameters rt and
kt.

{ Solve for the parameters rt and kt by
matching to the market data.

4

Common forms of Short rates

� Lognormal

F (t; U; rt; kt) = rtk
2U�t

2

t

�Normal

F (t; U; rt; kt) = rt + kt
2U � t

2

�Capped LogNormal

F (t; U; rt; kt) = minfrtk
2U�t

2

t ; �g

� Floored Normal

F (t; U; rt; kt) = maxfrt + kt
2U � t

2
; �g

5

AbstractTermStructure class

/**

Abstract class for building a BDT type interest-rate

model.

@author Somesh Jha

*/

package interestRate;

import mathUtil.*;

public abstract class AbstractTermStructure {

private static final boolean DEBUG=false;

//time horizon

int T;

//Used by the Newton-Raphson solver

SlowYieldVolObject slowYieldVolObj;

NewtonRaphson slowSolver;

//parameters of the BDT model

double r[];

double k[];

//bond yields and yield volatilities

//at time 0

double yield[];

double volatilities[];

//nodes[i] points to link list of

//nodes with time i

LinkList nodes[];

6

/**

Constructor takes following arguments.

@params T Time Horizon

@params yield Array of Bond yields

@params volatilites Array of Volatilities

*/

public AbstractTermStructure(int T, double yield[],

double volatilities[]){

//set the time horizon

this.T = T;

//allocate space for the parameters

r = new double[T+1];

k = new double[T+1];

//copy the bond yields and yield volatilities

int arrayLength = yield.length;

//assume volatility array has the same length

//as yield array

this.yield = new double[arrayLength];

this.volatilities = new double[arrayLength];

//copy the arrays

System.arraycopy(yield,0,this.yield,0,arrayLength);

System.arraycopy(volatilities,0,this.volatilities,0,arrayLength);

//allocate the linked-list

nodes = new LinkList[T+1];

for(int i=0; i <= T; i++)

nodes[i] = new LinkList();

//Get the yield-vol object

slowYieldVolObj = new SlowYieldVolObject(this);

//Instantiate the solver

7

slowSolver = new NewtonRaphson(slowYieldVolObj);

}//end of AbstractTermStructure

/**

The form of the short rate at the node (time,up_ticks)

*/

public abstract double F(int time, int up_ticks,

double r, double k);

/**

Generate the entire pdag upto time horizon T.

*/

public void GenPdag() {

if (DEBUG) System.out.println("Entered GenPdag");

nodes[0].Insert(new Key(0,0));

for(int t=0; t < T; t++) {

Node x=nodes[t].head;

while (x != null) {

if (DEBUG) {

System.out.println("Considering node: ");

x.key.print();

}

int up_ticks = ((Key)(x.key)).up_ticks;

//Generate successor nodes

Key up_key = new Key(t+1,up_ticks+1);

Key down_key = new Key(t+1,up_ticks);

x.succ[0] = nodes[t+1].Insert(up_key);

x.succ[1] = nodes[t+1].Insert(down_key);

8

x = x.next;

}//end of while

}//end of for

if (DEBUG) System.out.println("Leaving GenPdag");

}//end of GenPdag

/**

print the entire dag.

*/

public void print() {

try {

for(int t=0; t <= T; t++) {

System.out.print("Nodes at time ");

System.out.println(t);

System.out.println("------------BEGIN-----------------");

nodes[t].print();

System.out.println("------------END------------------");

}

}//

catch (LinkListException e) {

System.err.println("Shouldn't happen! "+e.getMessage());

System.exit(1);

}

}//end of print

//price of the bond of a given maturity

//(t,up_ticks). Assume that the parameters

//r, k are known upto time maturity-1

private double slowPrice(int t, int up_ticks,

int maturity) {

//Handle the base case

if (t == maturity) return(1);

9

else {

//Recursive call price on successor node

double price_up = slowPrice(t+1,up_ticks+1,maturity);

double price_down = slowPrice(t+1,up_ticks,maturity);

double returnPrice =

(0.5/(1+F(t,up_ticks,r[t],k[t])))*(price_up+price_down);

if (DEBUG) {

System.out.print("slowPrice:AbstractTermStructure returnPrice ");

System.out.println(returnPrice);

}

return(returnPrice);

}//end of else

}//end of slowPrice

/**

yield of the bond of a given maturity

at the node (t,up_ticks).

*/

public double slowYield(int t, int up_ticks,

int maturity) {

double bondPrice = slowPrice(t,up_ticks,maturity);

double bondYield = Math.pow(1.00/bondPrice,1.00/(maturity-t))-1;

if (DEBUG) {

System.out.print("slowYield:AbstractTermStructure bondYield ");

System.out.println(bondYield);

}

return(bondYield);

}//end of slowYield

10

/**

volatality of the yield of the bond

at node (t,up_ticks)

*/

double slowLogVol(int t, int up_ticks,

int maturity) {

double up_yield = Math.log(slowYield(t+1,up_ticks+1,maturity));

double down_yield = Math.log(slowYield(t+1,up_ticks,maturity));

double expectedSquareVal = 0.5*(up_yield*up_yield+

down_yield*down_yield);

double expectedVal = 0.5*(up_yield+down_yield);

return(Math.sqrt(expectedSquareVal-expectedVal*expectedVal));

}//end of slowLogVol

//solve for the parameters at time t

private void slowSolve(int t) {

//Handle the base case

if (t==0) {

r[0] = yield[0];

k[0] = 1;

}

else {

//update the maturity in the slowYieldVolObj

slowYieldVolObj.maturity = t+1;

double initialVal[] = new double[2];

//Set the initial value of the parameters

//time t to parameter values at time t-1

initialVal[0] = r[t-1];

initialVal[1] = k[t-1];

11

double result[] = slowSolver.solve(initialVal);

r[t] = result[0];

k[t] = result[1];

}//end of else

}//end of slowSolve

/**

Solve for the entire interest rate tree.

*/

public void slowSolve() {

//Call slowSolve iteratively

for (int t=0; t <= T; t++) {

slowSolve(t);

//fill the short-rate at the nodes

Node x=nodes[t].head;

while (x != null) {

Key key = (Key)x.key;

key.short_rate = F(t,key.up_ticks,r[t],k[t]);

x=x.next;

}

}

}//end of slowSolve

}//end of AbstractTermStructure

12

SlowYieldVolObject

package interestRate;

import mathUtil.*;

public class SlowYieldVolObject extends AbstractFunctionObject {

AbstractTermStructure termStructureObj;

//Yield and volatality are computed for the

//bond of that maturity

public int maturity;

private static final boolean DEBUG=false;

public SlowYieldVolObject(AbstractTermStructure aTerm) {

//call the constructor for the super class

super(2);

termStructureObj = aTerm;

}//end of constructor

//If i==0 calculate the yield and otherwise

//calculate the vol. Use values as value

//of r[t] and k[t]

public double evaluate(int i, double val[]) {

termStructureObj.r[maturity-1]=val[0];

termStructureObj.k[maturity-1]=val[1];

if (i==0) {

double tempYield =termStructureObj.slowYield(0,0,maturity);

if (DEBUG) {

System.out.println("SlowYieldVolObject:evaluate: maturity tempYield val");

System.out.println(maturity);

System.out.println(tempYield);

13

System.out.println(val[0]);

System.out.println(val[1]);

}

return(tempYield-termStructureObj.yield[maturity-1]);

}

else {

double tempVol = termStructureObj.slowLogVol(0,0,maturity);

if (DEBUG) {

System.out.println("SlowYieldVolObject:evaluate: maturity tempYield val");

System.out.println(maturity);

System.out.println(tempVol);

System.out.println(val[0]);

System.out.println(val[1]);

}

return(tempVol-termStructureObj.volatilities[maturity-1]);

}

}//end of evaluate

}//end of SlowYieldVolObject

14

Explanation

� T
Type: int

Time horizon

� slowYieldVolObject
Type: SlowYieldVolObject

Compute the yield and the volatility of the bond
with a certain maturity.

� slowSolver
Type: NewtonRaphson

Newton Raphson solver to match with market
data. Instantiated with slowYieldVolObject.

15

Explanation Continued

� r and k

Type: Array of double

Holds the parameters for our model. Elements
r[t] and k[t] are the parameters corresponding to
time t.

� yield and volatilities

Type: Array of double

Holds the market yields and yield volatailties of
bonds. Elements yield[t� 1] and
volatilities[t� 1] hold the yield and yield
volatilities of the bond Bt.

� nodes
Type: Array of LinkLists

nodes[t] is the linked-list of nodes corresponding
to time t.

16

Constructor

� Takes the time horizon and market yields and
yield volatilities and parameters.

� Allocates space for arrays r, k, yields, and
volatilities.

� Copies the yield and yield volatilities into its
local array.

� Allocates the linked-list.

� Instantiates the slowYieldVolObj and
slowSolver.

17

Method F

� This is an abstract function and provides the
form of the short rate.

� A class extending this class will provide an
implementation for F.

18

Method GenPdag

� Very similar to the abstract option class.

� Generates the lattice starting from the initial
time t = 0 and going upto the time-horizon.

19

Method print

� Prints all the nodes in the lattice.

� Starts from the initial time and goes upto the
time-horizon.

� Calls the print method in the LinkList class.

� If it catches and exception, then prints the
exception and exits.

20

Method slowPrice

� Computes the price of bond with a given
maturity at the node (t,up ticks).

� Notice the recursion.

� Notice that we use the abstract method F.

21

Method slowYield

� Computes the price of bond with a given
maturity at the node (t,up ticks).

� Let yield and price of bond B� at node (t; U) be
denoted by y(t; U; �) and P (t; U; �). We have the
following relationship between yield and price

P (t; U; �) =
1

(1 + y(t; U; �))��t

22

Method slowLogVol

� Computes the volatility of the log of the yield at
node (t,up ticks) for bond that matures at
time maturity.

� Notice that we need the yields at the successors
of the node.

23

Method slowSolve(int t)

� Assume that we have the interest rate tree for
time upto t� 1.

� This routine solves for the parameters r[t] and
k[t].

� Notice that we use bond that matures at time
t+1 to solve for the parameters r[t] and k[t].

� The maturity �eld in the slowYieldVolObj is
changed to t+1.

� The initial value to the Newton-Raphson solver
is the value of the parameters at time t-1.

24

Method slowSolve

� Solve for the parameters for all the times.

� Fill in the short-rates.

� Calls slowSolve(t).

25

Class SlowYieldVolObject

� Is a subclass of AbstractFunctionObject.

� Has to provide implmentation of the method
evaluate.

26

Method evaluate

� For i = 0 calculates the di�erence between yield
of the bond whose maturity is maturity at the
initial node (0; 0) and the market yield.

� For i 6= 0 calculates the di�erence between the
yield volatility of the bond whose maturity is
maturity at the initial node (0; 0) and the
market volatility.

� Needs reference to the termStructure.

27

Object Diagram

NewtonRaphsonSlowYieldVolObjectAbstractTermStructureLinkList

AbstractFunctionObject

Extends

Uses

Figure 1: TermStructure Object Hierarchy

28

LogNormal class

package interestRate;

public class LogNormal extends AbstractTermStructure {

public LogNormal(int T, double yield[],

double volatilities[]) {

super(T,yield,volatilities);

}//end of LogNormal

public double F(int time, int up_ticks, double r,

double k) {

int sum = 2*up_ticks - time;

return (r*Math.pow(k,sum));

}//end of F

}//end of class

29

About LogNormal

� Is a subclass of AbstractTermStructure.

�Method F implements a lognormal short rate.

30

Testing TermStructure

package testPrograms;

import interestRate.*;

public class testTermStructure {

static public void main(String argv[]) {

int T=4;

double yield[] = new double[5];

double volatilities[] = new double[5];

yield[0]=0.10;

volatilities[0] = 0.20;

yield[1]=0.11;

volatilities[1]=0.19;

yield[2]=0.12;

volatilities[2]=0.18;

yield[3]=0.125;

volatilities[3]=0.17;

yield[4]=0.13;

volatilities[4]=0.16;

LogNormal termObj = new LogNormal(T,yield,volatilities);

termObj.GenPdag();

termObj.slowSolve();

termObj.print();

} //end of main

}//end of testNewtonRaphson

31

About the Test Program

� Builds the interest rate lattice for time horizon
of 4.

� Clumsy! Would like to take the data from �le.

� Next we will discuss �le I/O.

32

I/O in JAVA

� Everything to do with I/O is in a package called
java.io.

� It is kind of complicated. Why?

� Internationalization
Supposed to handle many languages.

� Customization

Users can plug-in there own I/O routines.

33

Testing I/O

package testPrograms;

import java.io.*;

import java.util.*;

public class testFileIO {

static public double[] parseLine(String line) throws NumberFormatException {

//instantiate the String tokenizer

StringTokenizer tokenizer = new StringTokenizer(line);

int size = tokenizer.countTokens();

double result[] = new double[size];

int counter = 0;

while (tokenizer.hasMoreTokens()) {

String token = tokenizer.nextToken();

result[counter] = Double.valueOf(token).doubleValue();

counter++;

}

return(result);

}//end of parseLine

static public void main(String argv[]) {

String inputFileName=null;

String outputFileName="blahblah";

switch (argv.length) {

case 1:

inputFileName=argv[0];

break;

case 2:

34

inputFileName=argv[0];

outputFileName=argv[1];

break;

default:

System.out.println("Wrong number of arguments provide");

}

FileInputStream fiStream=null;

InputStreamReader isReader=null;

BufferedReader bReader=null;

FileOutputStream foStream=null;

PrintWriter pWriter=null;

try {

fiStream = new FileInputStream(inputFileName);

isReader = new InputStreamReader(fiStream);

bReader = new BufferedReader(isReader);

foStream = new FileOutputStream(outputFileName);

pWriter = new PrintWriter(foStream);

String line;

while ((line = bReader.readLine()) != null) {

System.out.println(line);

try {

double result[] = parseLine(line);

for (int i=0; i < result.length; i++) {

pWriter.print(result[i]);

pWriter.print(" ");

}

pWriter.println();

}

catch (NumberFormatException e) {

pWriter.println("Error in that Line");

}

}

35

pWriter.close();

foStream.close();

}

catch (FileNotFoundException e) {

System.err.println("Input file was not found "+e.getMessage());

}

catch (IOException e) {

System.err.println("IOException occured "+e.getMessage());

}

finally {

try {

if (fiStream != null)

fiStream.close();

}

catch (IOException e) {

System.err.println("Error while closing the file "+e.getMessage());

}

}

}//end of main

}//end of testFileIO

36

Explanation of the Program

� The program has to be invoked with a input
�lename.

� If the output �lename is not supplied, the
output �lename is blahblah.

� If the output �lename is supplied, it is used.

� Reads from the input �le and parses the lines
into array of doubles and prints them to
output �le.

37

Running the program

� Compile it.
javac testFileIO.java

� No output �le.
java testPrograms.testFileIO testFile

Writes output the �le blahblah.

� Output �le supplied.
java testPrograms.testFileIO testFile

outFile

Writes output the �le outFile.

38

Running the program (Contd)

� Input looks like:

0.10 .20

.11 .19

.12 .18

.125 .17

.13 .16

xxx

� Output looks like:

0.1 0.2

0.11 0.19

0.12 0.18

0.125 0.17

0.13 0.16

Error in that Line

39

System class

� Is a final class (what does this mean?).

� Has system de�ned functionality.

� Example: out is constant (static �nal) of type
PrintStream which is linked to the screen. Is
de�ned inside class System.

40

Variables Explained

� Look at the structure of the java.io package in
the book (Page 397).

� FileInputStream is �rst created. I can only
read binary data (or bytes) using this class (see
page 409).

� InputStreamReader allows me to read
characters but I want to read lines (see page
416).

� BufferedReader allows me to readlines and also
does bu�erring for e�ciency reasons (see page
400).

� Keep making the functionality more general.

41

StringTokenizer

� This class belongs to the package java.util.

� It allows us to break string into tokens.

� Consider the following code:

StringTokenizer tokenizer = new StringTokenizer(

System.out.println(tokenizer.nextToken());

�Will print abc.

42

Double class

� Double is not the same as double.

� Double extends a class Number and double is a
primitive type. It is in the package java.lang.

� Lot of utilities inside the class Double (see page
453).

� The statement given below parses a string into
an object of type Double and then calls method
doubleValue to convert it into a double.

43

Homework Setup

� Implement BlackScholesCallObject and
BlackScholesPutObject classes that extend
AbstractFunctionObject.

� The classes given above implement the
Black-Scholes formula for call and a put.

� The evaluate method takes the volatility as
argument and calculates the di�erence between
the Black-Scholes formula and the actual option
price.

44

Implied Volatility Graphs

� Pick a stock that has option prices for various
strike prices and expiration dates.

� Pick a stock which doesn't pay dividends or has
low dividend rate.

� Find the implied volatilities for this stock using
the Black-Schole objects and the Newton
Raphson Solver.

� Plot the following graphs:

{ Implied Volatilities against strike price for
options with same maturity.

{ Implied Volatilities against di�erent maturity
dates with same strike price.

{ Plot the graphs for both puts and calls.

45

Extending the class

� Extend this class to implement Normal, Capped
LogNormal, and Floored Normal models.

� Call these classes Normal, CappedLogNormal,
and FlooredNormal.

� Notice that for the classes CappedLogNormal
and FlooredNormal the constructor will have to
take an extra argument.

46

Faster AbstractTermStructure

� Use the idea of compound state-prices discussed
earlier.

� For each node (t; U) we have three compound
state-prices

{ �0(t; U) (Compound state price of the node at
the initial node (0; 0)).

{ �u(t; U) (Compound state price of the node at
the node (1; 1)).

{ �d(t; U) (Compound state price of the node at
the node (1; 0)).

47

Bond Prices

� Consider the bond Bt+1.

� The price of this bond at nodes (0; 0), (1; 1) and
(1; 0) is given by the following equations:

P (0; 0; t+ 1) =
tX

u=0
�0(t; u)

1

1 + r(t; u)

P (1; 1; t+ 1) =
tX

u=0
�u(t; u)

1

1 + r(t; u)

P (1; 0; t+ 1) =
tX

u=0
�d(t; u)

1

1 + r(t; u)

48

Updating State Prices

� Each time you solve for the parameters r[t] and
k[t] you have to update the state prices.

� �0(t+ 1; u) is computed using the forward
equation given below:

0:5

0
BB@�0(t; u)

1

1 + r(t; u)
+ �(t; u� 1)

1

1 + r(t; u� 1)

1
CCA

Similar equation holds for �u and �d.

� Handle the boundary nodes separately. (nodes
(t+ 1; 0) and (t+ 1; t+ 1)).

49

Overall Algorithm

� Base case

The short rate at the initial node (0; 0) is the
yield of the bond B1.

� Inductive Step

{ Assume we have computed the short-rates and
the compound state prices at the nodes
corresponding to time less than t.

{ Find the parameters r[t] and k[t] by matching
the yield and the yield volatitilties of the
bond Bt+1.

{ Use the state prices �0(t� 1; u), �u(t� 1; u),
and �d(t� 1; u) to compute the price of the
bond Bt+1 at the nodes (0; 0), (1; 1), and (1; 0).

{ Compute the compound state prices �0(t; u),
�u(t; u), and �d(t; u) using the forward
equation.

50

