46-935

Java for Computational Finance

Midterm Exam Solution
Name: Solution
Location:
Question | 4 5 6 Total
Points 15 15 15 15 20 20 100
Score

Questionl [15 points]

In the following program segment, what is being printed?
Write your answer in the program.

cl ass Xpl ain

{

void print() {Systemout.println(“A");}
}
class Xtend extends Xplain
{

void print() {Systemout.println(“B");}
}

public class Questionl

public static main(String args[])
{
Xplain x1
Xtend x2
Xtend x3;

new Xpl ai n();
new Xt end();

x1l.print();
/1 your answer A

x2.print();
/1 your answer B

x1 = x2;
x1l.print();
/1 your answer B

x3 = (Xtend) x1;
x3.print();
/1 your answer B

((Xtend) x1).print();
/1 your answer B

Question 2 [15 points]

This question will explore the tradeoffs between using an abstract class and an interface.
What arguments are there for using an abstract class over an interface?

1) Anabstract class alows partial implementations (some abstract methods and some defined methods).

2) An abstract is more flexible with data fields (fields in interfaces must be static and final — which makes
them constants).

3) An abstract class is more flexible with access modifiers (everything in an interface is publicly accessible).

What arguments are there for using an interface over an abstract class?

1) Javadoes not allow multiple inheritance — a class may only extend one superclass. However, a class may
implement many interfaces. Thus, if you need to inherit from more than one source, you must use
interfaces.

2) The conventional uses of interfaces and abstract classes are different. Interfaces tend to be used to provide
information about a class (“1 provide this set of methods!”). However, abstract classes are usually used to
create a hierarchical structure of related classes.

Question 3 [15 points]

One of the early criticisms of Java was that it was not fit for programs that involved heavy
computation because it was an interpreted language.

What does it mean to say that Java is interpreted?

Java technology uses both compilation and interpretation. Compilation isthe trandlation of code from one
language to another and storing the results of the trandlation for later use. Java source is compiled into
byte-codes which contain architecture-independent instructions for the Java Virtual Machine.
Interpretation also involves trand ating code from one language to another, except you directly execute the
trandation instead of storing it. In Java Virtual Machines, interpretation picks up where compilation left
off. JavaVirtual Machine instructions that were compiled from source code are interpreted by the virtual
machine — converted on the fly to native machine code, which is then executed rather than stored. This
interpretation process is obviously slower than directly executing native machine code.

The current versions of Java are now distributed with a just-in-time compiler (JIT). How does
this address the criticism listed above?

A JIT compiler trand ates Java Virtual Machine instructions into native machine code at run time on the
local platform. Once the virtual machine implementation has this trandation, it can run the native code at
speeds comparable to other compiled languages. Once Java programs are running at speeds comparable to
other compiled languages, they will be fit for executing programs that involve heavy computation.

Question 4 [15 points]

This question will test your understanding of exceptions. Suppose we have the simple class shown
below that implements a stack as an array with a set size.

/1A stack that has a three itemlimt
cl ass ThreeDeep

/1fields

static final int STACK SIZE = 3;

private int[] stack_store = new int[STACK S| ZE];
private int nurEl enent s 0;

Write the class declarations for two custom exceptions named — StackOverFlow and
StackUnderFlow. StackOverFlow will occur when an attempt is made to push an element onto
a full stack. StackUnderFlow will occur when an attempt is made to pop an element off of an
empty stack.

public class StackOverFl ow extends Exception

{
public StackOverFl owm) {super();}

public StackOverFlowString s) {super(s);}
public class StackUnder Fl ow ext ends Exception

public StackUnder Fl o) {super();}
public StackUnderFlom String s) {super(s);}

}

Write the push and pop methods for the ThreeDeep class. Make sure to raise the above
exceptions in the methods if appropriate. The push method is of type void, and takes an int
parameter (the integer to push onto the stack). The pop method is of type int, and takes no
parameter.

public void push(int i) throws StackOverFl ow
if (nunEl enents < STACK_SI ZE)
stack_store[nunEl ement s++] = i;
}
el se
t hrow new StackOver Fl om(" Stack Full");
}

public void pop(int i) throws StackUnderFl ow

if (nunEl enents > 0)

{
}

el se

return stack_store[--nunEl ement s++];

t hrow new St ackUnder Fl om " St ack Enpty");
return -1;

Question 5 [20 points]

The class declarations for the LattKey, LattNode, LattList, and Lattice classes are shown on the last
few pages of the exam. These classes provide a data structure for holding a lattice that is similar to
the data structure used in the AbstractOption class you saw in homework. This lattice data
structure, however, is more flexible because it tracks multiple assets and multiple auxiliary processes.
In addition, the number of successors of each node and corresponding edge the probabilities are not
fixed.

Write a forward equation that describes the expected discount rate at a node in terms of the
value of the expected discount rate at its predecessors.

EDRV)= & EDR
(V) vi gd(v) (V)gl () ;P(V)

EDR(root) =1

Write a method for the Lattice class (called CalcExpectedDiscount()) using forward induction
that will efficiently evaluate the forward equation at each node in the lattice and store the results
in the LattKey data field named quest5_value.

voi d Cal cExpect edDi scount ()
t

int i

int j;

doubl e sum

Lat t Node x;

for (i=0; i< timeHorizon; i++)
{ X = nodes[i]. head;
while (x !'= null)
if (i==0)
x. key. quest5_val ue = 1.0;
el se
{
sum = 0.0;
for (j=0; j<x.nunPred; j++)
{ sum = sum + ((x.predecessors[j].key.quest5_val ue *

X.incom ng_edge_probs[j])/
(x. predecessors[j].key.short_rate));

}

x. key. quest 5_val ue = sum
}
X

= X.next;

Question 6 [20 points]

Refer to the description of the lattice classes in Question 5.
Assume that the method you have written in Question 5 has already been executed on the lattice.

Write a backward equation that describes the expected discounted price of the first asset at the
time horizon. Recall that a backward equation is an equation that is defined in terms of its value
at its successors.

é 0
& & EDP(V)P(V',V)q

EDP(v) = &1 SJCC(V)EDR(v) u

EDR(leaf) = leaf.asset_prices[0]

Write a method for the Lattice class (called CalcExpectedPrice()) using backward induction that
will efficiently evaluate the backward equation at each node in the lattice and store the results in
the LattKey data field named quest6_value.

voi d Cal cExpectedPrice()
t

int i;

int j;

doubl e edp

Lat t Node x;

X = nodes[tinmeHori zon]. head

while(x !'= null)
{

x. key. quest 6_val ue = x. key. asset_prices[O0];
X = X.next;

}
for (i = (timeHorizon - 1); i >=0; i--)
x = nodes[i]. head

while (x !'= null)

{
edp = 0.0;

for (j = 0; j < x.nunBucc; j++)
{
edp = edp + (x.successors[j].key.quest6_val ue *
X. out goi ng_edge_probs[j]);
}

X. quest 6_val ue = edp/ x. key. quest5_val ue
X = X.next;

LattKey.java

package ExamlLatti ce;

public class LattKey inplenents LattVal ues

{
/**
* The (int) tine value
*/
public int time;
/**
* The (double) short rate
*/
public doubl e short _rate;
/**
* The (double) array of asset prices
*/
public doubl e asset _prices[] = new doubl e[NUM ASSETS]
/**
* The (doubl e) array of aux process val ues
*/
public doubl e aux_processes[] = new doubl e[NUM_AUX_ PRCCESSES] ;
/**
* The (doubl e) holder variable (refer to Question 5)
*/
public doubl e guest 5_val ue;
/**
* The (doubl e) holder variable (refer to Question 6)
*/

public doubl e guest 6_val ue;

/**

* Constructs a Key object, and sets the initial tine val ue.
*

* @aram aTine the (int) time val ue
*/
public LattKey(int aTinme)

//details renpved

}

/] ot her nethods renpved

LattNode.java

package ExamlLatti ce;

public class LattNode inplenments LattVal ues

{

/**

* The (Latt Node)
*/

reference to the previous node with this tinme val ue

public LattNode prev;

/**

* The (Latt Node)
*/

reference to the next node with this tine val ue

public LattNode next;

/**

* The (LattKey) data val ue

*/

public LattKey Kkey;

/**

* The (int) nunber of predecessors

*/

public int nunPred,

/**

* The (int) nunber of successors

*/

public int nunSucc;

/**

* The (Latt Node)
*/

reference to the predecessor node

public LattNode predecessors[];

/**

* The (Latt Node)
*/

array of references to successors

public LattNode successors[];

/**

* The (doubl e) arrays of incom ng and out goi ng edge
* probabilities (the ith probability corresponds to
* the ith edge in the pred/succ array)

*/

public doubl e i ncom ng_edge_probs[];
publ i c doubl e out goi ng_edge_probs[];

/**

* Constructs a LattNode object

*/

public LattNode(LattKey k, int succ, int pred)

//details renpved

}

LattList.java

package ExamlLatti ce;

public class LattLi st

{
/ * %
* The (LattNode) head of the |ist
*/
public LattNode head;
/ * %
* Constructs a LinkList object, initially the
* list will be enpty (head == null)
*/
public LattList()
{
head = nul|;
}
[/ other nethods renoved ...
}
Lattice.java

package ExamlLatti ce;

public class Lattice inplenents LattVal ues

{

/**

* The (integer) time horizon
*/

public int timeHorizon;

/**
* The array of LattList objects that represents the PDAG
* nodes[i] is a linked list of lattice nodes with tinme val ue
*/
public LattList nodes[];
/**
* Constructs an enpty lattice
*/
public Lattice(int T)

//details renpved

}

/**
* Cenerates the lattice to the tine horizon
*/

voi d Ceneratelattice()

//details renpved

LattValues.java

package ExamlLattice

public interface LattVal ues

{

/**
* The (int) nunber of
*/

public final static int

/**
* The (int) nunmber of
*/

public final static int

assets nmodel ed by the lattice

NUM_ASSETS = 3;

aux_processes

NUM_AUX_PROCESSES = 4;

