Probability & Statistics I

GSIA, Carnegie Mellon University

45-733, Spring 2002

Midterm Solution

Problem 1

A = AFC Wins

B = Points < 45
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1(a) Points 7
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Note: No points have been deducted for using 0.45 & 0.55)

1(b) Points 7
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1(c) Points 6

No. Since P (A|B)=0.5625 and P (A)=0.45, they are not independent.

The AFC tends disproportionately to win low-scoring superbowls.

Problem 2

2(a) Points 10

Tchebychev’s Rule says that 75% (at least) of observations are within 2 standard deviations of mean:
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2(b) Points 10
Tchebychev’s Rule for south (for 75% observations):
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Range = 1.2 to 2.8

So the lowest point in this range is 1.2, which is greater than 0.5. Thus, at least 75% of Southerners use more mouthwash than the mean Northerner.

Alternative Approach:

The IQR is 0.8 for the South. Since median < 75th percentile, 25th percentile is > (median – IQR). Thus 25th percentile > (1.5-0.8) = 0.7. So, at least 75% of Southerners use more mouthwash than median Northerner.

Problem 3

3(a) Points 7.5
P (at least 5 times) = P(X=5) + P(X=6) + P(X=7)

Where X is binomial with 7 trials and p = 0.4
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3(b) Points 7.5
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3(c) Points 5
No. Since presumably the same employees work day-to-day (especially over the period of a week), I would expect positive covariance (therefore not independence) in the X’s.

Problem 4

4(a) Points 5
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4(b) Points 5
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4(c) Points 5
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4(d) Points 5

W will be the binomial with n = 5 and, p = P (X > 80)
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Problem 5

5(a) Points 7
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5(b) Points 7
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5(c) Points 6
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Therefore the two are not independent.

Note: Some of you have calculated the covariance (0.37 
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0) to show that the two are not independent. You have been awarded full points. 
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