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Abstract
The purpose of this chapter is to present a survey of recent publications concerning medical
image registration techniques. These publications will be classified according to a model based
on nine salient criteria, the main dichotomy of which isextrinsicversusintrinsic methods The
statistics of the classification show definite trends in the evolving registration techniques, which
will be discussed. At this moment, the bulk of interesting intrinsic methods is either based on
segmented points or surfaces, or on techniques endeavoring to use the full information content
of the images involved.
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1. INTRODUCTION

Within the current clinical setting, medical imaging is a
vital component of a large number of applications. Such
applications occur throughout the clinical track of events;
not only within clinical diagnostis settings, but prominently
so in the area of planning, consummation, and evaluation
of surgical and radiotherapeutical procedures. The imaging
modalities employed can be divided into two global cate-
gories: anatomicaland functional. Anatomical modalities,
i.e., depicting primarily morphology, include X-ray, CT
(computed tomographya), MRI (magnetic resonance imag-
ingb), US (ultrasoundc), portal images, and (video) sequences
obtained by various catheter “scopes”,e.g.,by laparoscopy or
laryngoscopy. Some prominent derivative techniques are so
detached from the original modalities that they appear under
a separate name,e.g.,MRA (magnetic resonance angiogra-
phy), DSA (digital subtraction angiography, derived from X-
ray), CTA (computed tomography angiography), andDoppler
(derived from US, referring to the Doppler effect measured).
Functional modalities,i.e., depicting primarily information
on the metabolism of the underlying anatomy, include (pla-
nar) scintigraphy, SPECT (single photon emission computed
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aAlso formerly and popularly CAT, computed axial tomography.
bAlso referred to as NMR, nuclear magnetic resonance, spin imaging, and
various other names.
cAlso echo(graphy).

tomographyd), PET (positron emission tomographye), which
together make up thenuclear medicineimaging modalities,
and fMRI (functional MRI). With a little imagination, spa-
tially sparse techniques like, EEG (electro encephalography),
and MEG (magneto encephalography) can also be named
functionalimagingtechniques. Many more functional modal-
ities can be named, but these are either little used, or still in
the pre-clinical research stage,e.g.,pMRI (perfusion MRI),
fCT (functional CT), EIT (electrical impedance tomography),
and MRE (magnetic resonance elastography).

Since information gained from two images acquired in the
clinical track of events is usually of a complementary nature,
properintegrationof useful data obtained from the separate
images is often desired. A first step in this integration process
is to bring the modalities involved into spatial alignment, a
procedure referred to asregistration. After registration, a
fusionstep is required for the integrated display of the data
involved. Unfortunately, the termsregistrationandfusion, as
well asmatching, integration, correlation, and others, appear
polysemously in literature, either referring to a single step or
to the whole of the modality integration process. In this paper,
only the definitions of registration and fusion as defined above
will be used.

An eminent example of the use of registering different
modalities can be found in the area of epilepsy surgery.
Patients may undergo various MR, CT, and DSA studies

dAlso SPET, single photon emission tomography.
eSPECT and PET together are sometimes referred to as ECAT (emission
computerized axial tomography).



2 J.B.A. Maintzet al.

for anatomical reference; ictal and interictal SPECT studies;
MEG and extra and/or intra-cranial (subdural or depth) EEG,
as well as18FDG and/or11C-Flumazenil PET studies. Reg-
istration of the images from practically any combination will
benefit the surgeon. A second example concerns radiotherapy
treatment, where both CT and MR can be employed. The
former is needed to accurately compute the radiation dose,
while the latter is usually better suited for delineation of
tumor tissue.

Besides multimodality registration, important applica-
tion areas exist in monomodality registration. Examples
include treatment verification by comparison of pre- and
post-intervention images, comparison of ictal and inter-ictal
(during and between seizures) SPECT images, and growth
monitoring,e.g.,using time series of MR scans on tumors,
or X-ray time series on specific bones. Because of the
high degree of similarity between these images, solving the
registration is usually an order of magnitude easier than in
the multimodality applications.

This paper aims to provide a survey of recent literature
concerning medical image registration. Because of the
sheer volume of available papers, the material presented
is by necessity heavily condensed, and –except for a few
interesting and “classic” cases– no papers written before
1993 are referred to. Concerning publications pre-dating
1993, we refer the reader to review papers such as van den
Elsen, Pol & Viergever (1993) and Maurer, McCrory, &
Fitzpatrick (1993). No complete review papers of a later date
exist to our knowledge, except for the field of computer aided
surgery (Lavallée, 1996). To narrow the field of available
publications in such a way does not, however, impede us in
reaching our primary goal, which is to paint a comprehensive
picture of current medical image registration methods.

2. CLASSIFICATION OF REGISTRATION
METHODS

The classification of registration methods used in this chapter
is based on the criteria formulated by van den Elsen, Pol &
and Viergever (1993). A version considerably augmented and
detailed is presented. Nine basic criteria are used, each of
which is again subdivided on one or two levels. The nine
criteria and primary subdivisions are:

I. Dimensionality

II. Nature of registration basis

a. Extrinsic

b. Intrinsic

c. Non-image based

III. Nature of transformation

a. Rigid

b. Affine

c. Projective

d. Curved

IV. Domain of transformation

V. Interaction

VI. Optimization procedure

VII. Modalities involved

a. Monomodal

b. Multimodal

c. Modality to model

d. Patient to modality

VIII. Subject

a. Intrasubject

b. Intersubject

c. Atlas

IX. Object

A registration procedure can always be decomposed into
three major pillars: theproblem statement, the registration
paradigm, and theoptimization procedure. The problem
statement and the choice of paradigm and optimization pro-
cedure together provide a unique classification according to
the nine criteria mentioned. Although pillars and criteria are
heavily intertwined and have many cross-influences, it can be
said that the problem statement determines the classification
according to criteriaVII , VIII , and IX , and has a direct
bearing on the criteriaI andIII . The paradigm influences the
criteriaII , III , IV , andV most directly, while the optimization
procedure influences criterionV and controlsVI . It is often
helpful to remember the three pillars are independent, since
many papers do not describe them as such, often presenting
problem statement, paradigm, and optimization procedure in
a compounded way.

In the following sections, we will discuss the separate
criteria in more detail.

3. DIMENSIONALITY

I. Dimensionality

a. Spatial dimensions only:

1. 2D/2D
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2. 2D/3D

3. 3D/3D

b. Time series (more than two images), with spatial dimen-
sions:

1. 2D/2D

2. 2D/3D

3. 3D/3D

3.1. Spatial registration methods
The main division here is whether all dimensions are spatial,
or that time is an added dimension. In either case, the problem
can be further categorized depending on the number of spatial
dimensions involved. Most current papers focus on the
3D/3D registration of two images (no time involved).3D/3D
registration normally applies to the registration of two tomo-
graphic datasets, or the registration of a single tomographic
image to any spatially defined information,e.g., a vector
obtained from EEG data.2D/2D registration may apply to
separate slices from tomographic data, or intrinsically 2D
images like portal images. Compared to3D/3D registration,
2D/2D registration is less complex by an order of magnitude
both where the number of parameters and the volume of the
data are concerned, so obtaining a registration is in many
cases easier and faster than in the3D/3D case. We reserve
2D/3D registration for the direct alignment of spatial data
to projective data, (e.g., a pre-operative CT image to an
intra-operative X-ray image), or the alignment of a single
tomographic slice to spatial data. Some applications register
multiple 2D projection images to a 3D image, but since a
usual preprocessing step is to construct a 3D image from the
2D projection images, such applications are best categorized
as3D/3D applications. Since most2D/3D applications con-
cern intra-operative procedures within the operating theater,
they are heavily time-constrained and consequently have a
strong focus on speed issues connected to the computation
of the paradigm and the optimization. The majority of
applications outside the operating theater and radiotherapy
setting allow for off-line registration, so speed issues need
only be addressed as constrained by clinical routine.

3.2. Registration of time series
Time seriesof images are acquired for various reasons,
such as monitoring of bone growth in children (long time
interval), monitoring of tumor growth (medium interval),
post-operative monitoring of healing (short interval), or ob-
serving the passing of an injected bolus trough a vessel tree
(ultra-short interval). If two images need to be compared,
registration will be necessary except in some instances of
ultra-short time series, where the patient does not leave the

scanner between the acquisition of two images. The same
observations as for spatial-only registrations apply.

4. NATURE OF REGISTRATION BASIS

II. Nature of registration basis

a. Extrinsic

1. Invasive

A. Stereotactic frame

B. Fiducials (screw markers)

2. Non-invasive

A. Mould, frame, dental adapter,etc.

B. Fiducials (skin markers)

b. Intrinsic

1. Landmark based

A. Anatomical

B. Geometrical

2. Segmentation based

A. Rigid models (points, curves, surfaces)

B. Deformable models (snakes, nets)

3. Voxel property based

A. Reduction to scalars/vectors (moments, prin-
cipal axes)

B. Using full image content

c. Non-image based (calibrated coordinate systems)

4.1. Extrinsic registration methods
Image based registration can be divided intoextrinsic,
i.e., based on foreign objects introduced into the imaged
space, andintrinsic methods,i.e., based on the image infor-
mation as generated by the patient.

Extrinsic methods rely on artificial objects attached to
the patient, objects which are designed to be well visible
and accurately detectable in all of the pertinent modalities.
As such, the registration of the acquired images is com-
paratively easy, fast, can usually be automated, and, since
the registration parameters can often be computed explicitly,
has no need for complex optimization algorithms. The
main drawbacks of extrinsic registration are the prospective
character,i.e.,provisions must be made in the pre-acquisition
phase, and the often invasive character of the marker objects.
Non-invasive markers can be used, but as a rule are less
accurate. A commonly used fiducial object is astereotactic
frame(Lunsford, 1988; Vandermeulen, 1991; Lemieuxet al.,
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1994b; Lemieux and Jagoe, 1994; Strotheret al., 1994;
Hemleret al., 1995c; Vandermeulenet al., 1995; Peterset al.,
1996) screwed rigidly to the patient’s outer skull table, a
device which until recently provided the “gold standard” for
registration accuracy. Such frames are used for localization
and guidance purposes in neurosurgery. Since neurosurgery
is one of the main application areas of registration, the use
of a stereotactic frame in the registration task does not add
an additional invasive strain to the patient. However, the
mounting of a frame for the sole purpose of registration is
not permissible. Sometimes other invasive objects are used,
such as screw-mounted markers (Gall and Verhey, 1993;
Leung Lamet al., 1993; Maureret al., 1993; Liet al., 1994b;
Maurer et al., 1994; Maureret al., 1995b; Maureret al.,
1995a; Simonet al., 1995b; Elliset al., 1996), but usually
non-invasive marking devices are reverted to. Most popular
amongst these are markers glued to the skin (Evanset al.,
1991; Maguireet al., 1991; Malisonet al., 1993; Wanget al.,
1994b; Wahlet al., 1993; Bucholzet al., 1994; Li et al.,
1994b; Edwardset al., 1995a; Edwardset al., 1995b; Leslie
et al., 1995; Stapletonet al., 1995; Wanget al., 1995; Fuchs
et al., 1996), but larger devices that can be fitted snugly to
the patient, like individualized foam moulds, head holder
frames, and dental adapters have also been used, although
they are little reported on in recent literature (Greitzet al.,
1980; Laitinenet al., 1985; Schadet al., 1987; Hawkeset al.,
1992; Evanset al., 1989; Evanset al., 1991).

Since extrinsic methods by definition cannot include pa-
tient related image information, the nature of the registration
transformation is often restricted to be rigid (translations and
rotations only). Furthermore, if they are to be used with
images of low (spatial) information content such as EEG
or MEG, a calibrated video image or spatial measurements
are often necessary to provide spatial information for basing
the registration on. Because of the rigid-transformation con-
straint, and various practical considerations, use of extrinsic
3D/3D methods is largely limited to brain and orthopedic (Si-
mon et al., 1995b; Ellis et al., 1996) imaging, although
markers can often be used in projective (2D) imaging of
any body area. Non-rigid transformations can in some cases
be obtained using markers,e.g., in studies of animal heart
motion, where markers can be implanted into the cardiac
wall.

4.2. Intrinsic registration methods
Intrinsic methods rely on patient generated image content
only. Registration can be based on a limited set of identified
salient points(landmarks), on the alignment of segmented bi-
nary structures(segmentation based), most commonly object
surfaces, or directly onto measures computed from the image
grey values(voxel property based).

4.2.1. Landmark based registration methods

Landmarkscan beanatomical, i.e., salient and accurately
locatable points of the morphology of the visible anatomy,
usually identified interactively by the user (Evanset al., 1989;
Evanset al., 1991; Hill et al., 1991a; Hill et al., 1991b;
Maguireet al., 1991; Zubalet al., 1991; Henriet al., 1992;
Bijhold, 1993; Dinget al., 1993; Fright and Linney, 1993;
Gluhchev and Shalev, 1993; Hillet al., 1993b; Morriset al.,
1993; Neelinet al., 1993; Wahlet al., 1993; Geet al.,
1994; Harmonet al., 1994; Moseley and Munro, 1994;
Pietrzyket al., 1994; Strotheret al., 1994; Edwardset al.,
1995a; Edwardset al., 1995b; Geet al., 1995; Hamadeh
et al., 1995b; Hamadehet al., 1995c; Leslieet al., 1995;
Meyeret al., 1995; McParland and Kumaradas, 1995; Soltys
et al., 1995; Saviet al., 1995; Stapletonet al., 1995;
Vandermeulenet al., 1995; Zubalet al., 1995; Christensen
et al., 1996; Evanset al., 1996b; Evanset al., 1996a; Erbe
et al., 1996; Fanget al., 1996; Peterset al., 1996; Rubinstein
et al., 1996), orgeometrical, i.e., points at the locus of the
optimum of some geometric property,e.g., local curvature
extrema, corners,etc, generally localized in an automatic
fashion (Heet al., 1991; Fontanaet al., 1993; Ault and Siegel,
1994; Eilertsenet al., 1994; Thirion, 1994; Ault and Siegel,
1995; Uenohara and Kanade, 1995; Amit and Kong, 1996;
Chua and Jarvis, 1996; Thirion, 1996a). Technically, the
identification of landmark points is a segmentation procedure,
but we reserve the classificationsegmentation basedregis-
tration for methods relating to segmentation of structures of
higher order,i.e., curves, surfaces, and volumes. Landmark
based registration is versatile in the sense that it –at least
in theory– can be applied to any image, no matter what the
object or subject is. Landmark based methods are mostly
used to find rigid or affine transformations. If the sets of
points are large enough, they can theoretically be used for
more complex transformations. Anatomical landmarks are
also often used in combination with an entirely different
registration basis (Evanset al., 1989; Evanset al., 1991;
Wahlet al., 1993; Moseley and Munro, 1994; Hamadehet al.,
1995c; McParland and Kumaradas, 1995; Zubalet al., 1995;
Christensenet al., 1996; Evanset al., 1996b): methods that
rely on optimization of a parameter space that is not quasi-
convex are prone to sometimes get stuck in local optima,
possibly resulting in a large mismatch. By constraining
the search space according to anatomical landmarks, such
mismatches are unlikely to occur. Moreover, the search
procedure can be sped up considerably. A drawback is that
user interaction is usually required for the identification of
the landmarks.

In landmark based registration, the set of identified points
is sparse compared to the original image content, which
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makes for relatively fast optimization procedures. Such
algorithms optimize measures such as the average distance
(L2 norm) between each landmark and its closest counter-
part (theProcrusteanmetric), or iterated minimal landmark
distances. For the optimization of the latter measure the
Iterative closest point(ICP) algorithm (Besl and McKay,
1992) and derived methods are popular. Its popularity can
be accredited to its versatility –it can be used for point sets,
and implicitly and explicitly defined curves, surfaces and
volumes–, computational speed, and ease of implementa-
tion. The Procrustean optimum can sometimes be computed,
using e.g., Arun’s method (1987), but is more commonly
searched for using general optimization techniques. Such
techniques are referred to in section 7. Yet other methods
perform landmark registration by testing a number of likely
transformation hypotheses, which can,e.g., be formulated
by aligning three randomly picked points from each point
set involved. Common optimization methods here are quasi-
exhaustive searches, graph matching and dynamic program-
ming approaches.

4.2.2. Segmentation based registration methods
Segmentation basedregistration methods can berigid model
based(Chenet al., 1987; Levinet al., 1988; Guéziec and
Ayache, 1992; Jianget al., 1992b; Ayacheet al., 1993;
Collignon et al., 1993a; Fritsch, 1993; Geeet al., 1993;
Geeet al., 1994; Geeet al., 1995a; Geeet al., 1995b; Gee
and Haynor, 1996; Gilhuijs and van Herk, 1993; Hillet al.,
1993a; Kittler et al., 1993; Miller et al., 1993; Rusinek
et al., 1993; Tsuiet al., 1993; Turkingtonet al., 1993; Zhao
et al., 1993; Collignonet al., 1994; Ettingeret al., 1994b;
Ettinger et al., 1994a; Feldmar and Ayache, 1994; Fritsch
et al., 1994b; Fritschet al., 1994a; Grimsonet al., 1994a;
Grimsonet al., 1994b; Grimsonet al., 1994c; Hemleret al.,
1994a; Hemleret al., 1994b; Huang and Cohen, 1994; Hata
et al., 1994; Hendersonet al., 1994; van Herk and Kooy,
1994; Kanatani, 1994; Krattenthaleret al., 1994; Kooyet al.,
1994; Lavalléeet al., 1994; Liuet al., 1994; Maureret al.,
1994; Mendonc¸a et al., 1994; Péria et al., 1994; Philips,
1994; Pettiet al., 1994; Simonet al., 1994; Serra and
Berthod, 1994; Szelisky and Lavall´ee, 1994; Szeliski and
Lavallée, 1994; Scottet al., 1994; Strotheret al., 1994;
Staib and Xianzhang, 1994; Tanejaet al., 1994; Wanget al.,
1994a; Zuket al., 1994; Ardekaniet al., 1995; Andersson
et al., 1995; Andersson, 1995; Betting and Feldmar, 1995;
Betting et al., 1995; Burelet al., 1995; Christmaset al.,
1995; Feldmaret al., 1995; Grimsonet al., 1995; Henri
et al., 1995; Hemleret al., 1995c; Hemleret al., 1995b;
Hemleret al., 1995a; Hamadehet al., 1995b; Hamadehet al.,
1995c; Hamadehet al., 1995a; Kruggel and Bartenstein,
1995; Lavallée and Szeliski, 1995; Leszczynskiet al., 1995;

Maurer et al., 1995a; Pellotet al., 1995; Pallottaet al.,
1995; Pajdla and van Gool, 1995; Pennec and Thirion, 1995;
Ryanet al., 1995; Rizzoet al., 1995; Simonet al., 1995b;
Simonet al., 1995a; Serra and Berthod, 1995; Scottet al.,
1995; Sull and Ahuja, 1995; Troccazet al., 1995; Turkington
et al., 1995; Vassalet al., 1995; Vandermeulenet al., 1995;
Xiao and Jackson, 1995; Zubalet al., 1995; Declercet al.,
1996; Evanset al., 1996b; Ettingeret al., 1996; Feldmar and
Ayache, 1996; Grimsonet al., 1996; Gilhuijset al., 1996; Ge
et al., 1996; Goriset al., 1996; Hemleret al., 1996; Jainet al.,
1996; Lavallée et al., 1996b; Lavallée et al., 1996a; Qian
et al., 1996; Szeliski and Lavall´ee, 1996; Wanget al., 1996c),
where anatomically the same structures (mostly surfaces) are
extracted from both images to be registered, and used as
sole input for the alignment procedure. They can also be
deformable model based(Bajcsyet al., 1983; Guéziec, 1993;
Taubin, 1993; Davatzikos and Prince, 1994; MacDonald
et al., 1994; Sandor and Leahy, 1994; Tomet al., 1994; Bro-
nielsen, 1995; Bainvilleet al., 1995; Manginet al., 1995;
Sandor and Leahy, 1995; Thirion, 1995; Cuisenaireet al.,
1996; Davatzikoset al., 1996; Davatzikos, 1996; McInerney
and Terzopoulos, 1996; Thirion, 1996b), where an extracted
structure (also mostly surfaces, and curves) from one image is
elastically deformed to fit the second image. Therigid model
basedapproaches are probably the most popular methods
currently in clinical use. Their popularity relative to other
approaches is probably for a large part due to the success
of the “head-hat” method as introduced by Pelizzari and co-
workers (Chenet al., 1987; Levin et al., 1988; Pelizzari
et al., 1989; Chen and Pelizzari, 1989), which relies on the
segmentation of the skin surface from CT, MR and PET
images of the head. Since the segmentation task is fairly
easy to perform, and the computational complexity relatively
low, the method has remained popular, and many follow-up
papers aimed at automating the segmentation step, improving
the optimization performance, or otherwise extending the
method have been published. Another popularity cause is
the fastChamfer matchingtechnique for alignment of binary
structures by means of a distance transform, introduced
by Borgefors (1988). A drawback of segmentation based
methods is that the registration accuracy is limited to the
accuracy of the segmentation step. In theory, segmentation
based registration is applicable to images of many areas of
the body, yet in practice the application areas have largely
been limited to neuroimaging and orthopedic imaging. The
methods are commonly automated but for the segmentation
step, which is performed semi-automatically most of the
times.

With deformable modelshowever, the optimization cri-
terion is different: it is always locally defined and com-
puted, and the deformation is constrained by elastic model-
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ing constraints (by a regularization term) imposed onto the
segmented curve or surface. Deformable curves appear in
literature assnakesor active contours; 3D deformable models
are sometimes referred to asnets. To ease the physical model-
ing, the data structure of deformable models is not commonly
a point set. Instead, it is often represented using localized
functions such as splines. The deformation process is always
done iteratively, small deformations at a time. Deformable
model approaches are based on atemplate modelthat needs to
be defined in one image. After this, two types of approaches
can be identified: the template is either deformed to match
a segmented structure in the second image (Taubin, 1993;
Davatzikos and Prince, 1994; Sandor and Leahy, 1994; Tom
et al., 1994; Bro-nielsen, 1995; Bainvilleet al., 1995; Sandor
and Leahy, 1995; Thirion, 1995; Cuisenaireet al., 1996;
Davatzikoset al., 1996; Davatzikos, 1996; Thirion, 1996b),
or the second image is usedunsegmented(Bajcsyet al., 1983;
Guéziec, 1993; MacDonaldet al., 1994). In the latter case,
the fit criterion of the template can be,e.g., to lie on an
edge region in the second image. Opposed to registration
based on extracted rigid models, which is mainly suited for
intrasubject registration, deformable models are in theory
very well suited for intersubject and atlasa registration, as
well as for registration of a template obtained from a patient
to a mathematically defined general model of the templated
anatomy. A drawback of deformable models is that they often
need a good initial position in order to properly converge,
which is generally realized by (rigid) pre-registration of the
images involved. Another disadvantage is that the local
deformation of the template can be unpredictably erratic if the
target structure differs sufficiently from the template struc-
ture. A typical error is that the deformable model matches
the anatomy perfectly, except in the one interesting image
area where a large tumor growth has appeared. In intrasubject
matching of,e.g.,the cortical surface, this may result in entire
gyri being missed or misplaced. The solution may lie in
locally adapting the elasticity constraints (Bro-nielsen, 1995;
Little et al., 1996). Deformable models are best suited to
find local curved transformations between images, and less
so for finding (global) rigid or affine transformations. They
can be used on almost any anatomical area or modality, and
are usually automated but for the segmentation step. In the
current literature the major applications are registration of
bone contours obtained from CTb, and cortical registration
of MR images (Bajcsyet al., 1983; Davatzikos and Prince,
1994; MacDonaldet al., 1994; Sandor and Leahy, 1994;
Sandor and Leahy, 1995; Thirion, 1995; Cuisenaireet al.,
1996; Davatzikoset al., 1996; Davatzikos, 1996; Thirion,

aIntersubject and atlas registration is covered in section 9.
be.g.,see (Fanget al., 1996).

1996b). Deformable models are ideally suited for the former
application, as the bone contours are easily extracted from
the CT, and there are often no other contours near that disturb
the proper deformation convergence. The latter application
is important because if a cortical registration between two
brains can be found, a segmentation of one cortex can be
instantly transfered to the other.

4.2.3. Voxel property based registration methods
The voxel property basedregistration methods stand apart
from the other intrinsic methodsc by the fact that they
operate directly on the image grey values, without prior
data reduction by the user or segmentation. There are two
distinct approaches: the first is to immediatelyreducethe
image grey value content to a representative set of scalars
and orientations, the second is to use the full image content
throughout the registration process.

Principal axes and moments based methodsare the prime
examples ofreductiveregistration methods. Within these
methods the image center of gravity and its principal orien-
tations (principal axes) are computed from the image zeroth
and first order moments. Registration is then performed
by aligning the center of gravity and the principal orienta-
tions (Alpertet al., 1990; Banerjee and Toga, 1994; Ettinger
et al., 1994b; Ettingeret al., 1994a; Pav´ıa et al., 1994;
Wang and Fallone, 1994; Slomkaet al., 1995; Dong and
Boyer, 1996; Wanget al., 1996a). Sometimes, higher
order moments are also computed and used in the process.
The result is usually not very accurate, and the method is
not equipped to handle differences in scanned volume well,
although some authors attempt to remedy this latter problem.
Despite its drawbacks, principal axes methods are widely
used in registration problems that require no high accuracy,
because of the automatic and very fast nature of its use, and
the easy implementation. The method is used primarily in the
re-alignment of scintigraphic cardiac studies (even intersub-
ject) (Slomkaet al., 1995), and as a coarse pre-registration
in various other registration areas (Banerjee and Toga, 1994;
Ettinger et al., 1994b; Ettingeret al., 1994a; Pav´ıa et al.,
1994; Slomkaet al., 1995; Dong and Boyer, 1996). Moment
based methods also appear as hybridly classified registration
methods that use segmented or binarized image data for input.
In many applications, pre-segmentation is mandatory in order
for moment based methods to produce acceptable results.

Voxel property based methods using the full image content
are the most interesting methods researched currently. Theo-
retically, these are the most flexible of registration methods,
since they –unlike all other methods mentioned– do not start
with reducing the grey valued image to relatively sparse

cExcept some instances of geometric landmark registration.
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extracted information, but use all of the available information
throughout the registration process. Although voxel property
based methods have been around a long time, their use in
extensive 3D/3D clinical applications has been limited by
the considerable computational costs. An increasing clinical
call for accurate and retrospective registration, along with
the development of ever-faster computers with large internal
memories, have enabled full-image-content methods to be
used in clinical practice, although they have not yet been
introduced in time-constrained applications such as intra-
operative 2D/3D registration. Methods using the full image
content can be applied in almost any medical application
area, using any type of transformation. However, such a
statement is largely merited by the fact that “full-image-
content based” is a very gross classifier. The real versatility
of a method can only be established on an individual basis.
Many recent papers report on applications that are tailored for
rigid or affine global registration of 3D images of the head.
Nearly all presented methods are automatic, although hybrid
approaches (e.g.,including an interactive landmark based pre-
registration) are being suggested (Studholmeet al., 1996).
While the methods theoretically support curved transforma-
tions and intersubject registration, we have encountered only
few publications on this.

As concerns full-image-content based voxel property
registration methods, literature reports on the follow-
ing paradigms being used (� = most likely restricted to
monomodal applications):

� Cross-correlation (of original images or extracted fea-
ture images) (Juncket al., 1990; Bacharachet al., 1993;
Bettinardi et al., 1993; van den Elsen and Viergever,
1993; Hill, 1993; Hua and Fram, 1993; M¨unch and
Rüegsegger, 1993; Radcliffeet al., 1993; Banerjee
and Toga, 1994; Collinset al., 1994a; Collinset al.,
1994b; van den Elsen, 1994; van den Elsenet al.,
1994; Lemieuxet al., 1994a; Moseley and Munro,
1994; Maintzet al., 1994; Maintzet al., 1996c; Pav´ıa
et al., 1994; Radcliffeet al., 1994; Andersson, 1995;
Anderssonet al., 1995; Cideciyan, 1995; Collinset al.,
1995; van den Elsenet al., 1995; Hemleret al., 1995c;
McParland and Kumaradas, 1995; Maintzet al., 1995;
Peraultet al., 1995; Studholmeet al., 1995b; Studholme
et al., 1995a; Dong and Boyer, 1996; Gottesfeld Brown
and Boult, 1996; Hristov and Fallone, 1996; Lehmann
et al., 1996; Maintzet al., 1996b).

� Fourier domain based cross-correlation, and phase-only
correlation (de Castro and Morandi, 1987; Leclerc and
Benchimol, 1987; Chen, 1993; Lehmannet al., 1996;
Shekarforoushet al., 1996; Wanget al., 1996b).

� Minimization of variance of intensity ratios (Hill, 1993;

Hill et al., 1993a; Woodset al., 1993; Ardekaniet al.,
1994; Studholmeet al., 1995b; Studholmeet al., 1995a;
Zuoet al., 1996).

� Minimization of variance of grey values within seg-
ments (Cox and de Jager, 1994; Ardekaniet al., 1995).

� Minimization of the histogram entropy of difference
images (Buzug and Weese, 1996).

� Histogram clustering and minimization of histogram
dispersion (Hill, 1993; Hill et al., 1994; Hill and
Hawkes, 1994; Collignonet al., 1995b; Hawkeset al.,
1995; Studholmeet al., 1995b; Studholmeet al., 1995a;
Lehmannet al., 1996).

� Maximization of mutual information (relative entropy)
of the histogram (Collignonet al., 1995a; Viola and
Wells III, 1995; Viola, 1995; Wells IIIet al., 1995; Maes
et al., 1996; Pokrandt, 1996; Studholmeet al., 1996;
Viola et al., 1996; Wells IIIet al., 1996).

� Maximization of zero crossings in difference images
(Stochastic sign change (SSC), and Deterministic sign
change (DSC) criterion) (Venotet al., 1983; Venotet al.,
1984; Venot and Leclerc, 1984; Hua and Fram, 1993;
Hohet al., 1993; Venotet al., 1994; Peraultet al., 1995;
Bani-Hashemiet al., 1996).

� Cepstral echo filtering (Bandariet al., 1994).
� Determination of the optic flow field (Barberet al.,

1995; Meunieret al., 1996).
� Minimization of the absolute or squared intensity differ-

ences (Hohet al., 1993; Langeet al., 1993; Zhaoet al.,
1993; Moseley and Munro, 1994; Yeunget al., 1994;
Christensenet al., 1995b; Christensenet al., 1995a;
Haller et al., 1995; Hajnalet al., 1995a; Hajnalet al.,
1995b; Jacq and Roux, 1995; Kruggel and Bartenstein,
1995; Slomkaet al., 1995; Unseret al., 1995; Chris-
tensenet al., 1996; Eberlet al., 1996; Halleret al.,
1996).

� Matching local low-order Taylor expansions determined
by the image grey values (Shieldset al., 1993).

� Implicitly using surface registration by interpreting a 3D
image as an instance of a surface in 4D space (Feldmar
et al., 1996).

4.3. Non-image based registration
It seems paradoxical that registration of multimodal images
can benon-image based, but it is possible if the imaging
coordinate systems of the two scanners involved are somehow
calibrated to each other. This usually necessitates the scan-
ners to be brought in to the same physical location, and the
assumption that the patient remain motionless between both
acquisitions. These are prohibitive prerequisites in nearly all
applications, but they can be sufficiently met in applications
involving the use of ultrasound (Hataet al., 1994; Péria
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et al., 1995; Erbeet al., 1996). Since ultrasound systems can
come as hand-held devices that are equipped with a spatial
(optical) localization system, they are easily calibrated, and
can be used while the patient is immobilized on the CT, MR
or operating gantry. The technique of calibrated coordinate
systems is also often used in registering the position of
surgical tools mounted on a robot arm to imagesa.

5. NATURE AND DOMAIN OF THE
TRANSFORMATION

III. Nature of transformation

a. Rigid

b. Affine

c. Projective

d. Curved

IV. Domain of transformation

a. Local

b. Global

5.1. Nature of the transformation
An image coordinate transformation is calledrigid, when
only translations and rotationsb are allowed. If the trans-
formation maps parallel lines onto parallel lines it is called
affine. If it maps lines onto lines, it is calledprojective.
Finally, if it maps lines onto curves, it is calledcurvedor
elastic. Each type of transformation contains as special cases
the ones described before it,e.g.,the rigid transformation is
a special kind of affine transformation. A composition of
more than one transformation can be categorized as a single
transformation of the most complex type in the composition,
e.g.,a composition of a projective and an affine transforma-
tion is a projective transformation, and a composition of rigid
transformations is again a rigid transformation.

A rigid or affine 3D transformation can be described using
a single constant matrix (a) equation:yi = ai j xj , wherex and
y are the old and new coordinate vectors. In the rigid case,
this equation is constrained as:

0
BB@

y1

y2

y3

1

1
CCA=

0
BB@

r t

0 0 0 1

1
CCA

0
BB@

x1

x2

x3

1

1
CCA ;

aFor instance (Potamianoset al., 1995; Peterset al., 1996). See computer
aided surgery literature (Lavall´ee, 1996) for more complete references.
band, technically, reflections, but this is disregarded in our formulation, since
they do not apply to the general medical image registration problem.

where t is an arbitrary translation vector, andr is a 3� 3
rotation matrix defined by:

ril = r(1)i j r(2)jk r(3)kl ; r(1) =

0
@

1 0 0
0 cosα1 �sinα1

0 sinα1 cosα1

1
A

;

r(2) =

0
@

cosα2 0 sinα2

0 1 0
�sinα2 0 cosα2

1
A

; r(3) =

0
@

cosα3 �sinα3 0
sinα3 cosα3 0

0 0 1

1
A

;

i.e., r(i) rotates the image around axisi by an angleαi . In
the affine case,r is unrestricted. In the projective case, we
can only use a constant matrix representation if employing
homogeneous coordinates:yi = ui=u4;ui = ai j xj , wherea is
an arbitrary 4� 4 constant matrix. Curved transformations
cannot in general be represented using constant matrices.
Most applications represent curved transformations in terms
of a local vector displacement(disparity) field: yi = xi +
ti(x), or as polynomial transformations in terms of the old
coordinates.

5.2. Domain of the transformation
A transformation is calledglobal if it applies to the entire
image, andlocal if subsections of the image each have their
own transformations defined. Figure 1 shows examples of all
transformation types mentioned.

Original Global Local

Rigid

Affine

Projective

Curved

Figure 1. Examples of 2D transformations.

5.3. General transformation observations
Local transformations are seldom used directly, because they
may violate the local continuity and bijectiveness of the trans-
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formations, which impairs straightforward image resampling
when applying the transformation to the image. The term
local transformationis reserved for transformations that are
composites ofat least two transformations determined on
sub-images that cannot be generally described as a global
transformation. Hence, asingletransformation computed on
some volume of interest of an image, is aglobal transfor-
mation, except that “global” now refers to the new image,
which is a sub-image of the original. This definition, perhaps
confusingly, does not impair a global transformation to be
computed locally,e.g.,some applications compute a global
rigid transformation of an image of the entire head based on
computations done in the area of the facial surface only. Local
rigid, affine, and projective transformations occur only rarely
in the literature, although local rigid transformations may ap-
pear embedded in local curved transformations (Bro-nielsen,
1995; Littleet al., 1996). Some problems that are intrinsically
locally rigid (such as the registering of individual vertebrae
from images of the spinal column) are in registration tasks
often solved by splitting the image in images meeting the
global rigid body constraint.

In recently published registration papers, as a rule, rigid
and affine transformations are global, and curved transfor-
mations are local. This makes sense, given the physical
model underlying the curved transformation type, and given
that the rigid body constraint is –globally, or in well defined
sub-images– approximately met in many common medical
images. Affine transformations are typically used in instances
of rigid body movement where the image scaling factors
are unknown or suspected to be incorrect, (notably in MR
images because of geometric distortions). The projective
transformation type has no real physical basis in image
registration except for2D/3D registration, but is sometimes
used as a “constrained-elastic” transformation when a fully
elastic transformation behaves inadequately or has too many
parameters to solve for. The projective transformation is not
always used in2D/3D applications: even though projections
will always figure in the problem, the transformation itself is
not necessarily projective but may be rigid, if it applies to the
3D image prior to its projection to the 2D image.

Since local information of the anatomy is essential to
provide an accurate local curved transformation, applications
are nearly alwaysintrinsic, mostlydeformable model based
or using the full image content, and mostly semi-automatic,
requiring a user-identified initialization. They appear almost
solely using anatomical images (CT, MR) of the head, and are
excellently suited for intersubject and image to atlas registra-
tion. Many methods require a pre-registration (initialization)
using a rigid or affine transformation.

The global rigid transformation is used most frequently
in registration applications. It is popular because in many

common medical images the rigid body constraint is, at
least to a good approximation, satisfied. Furthermore, it
has relatively few parameters to be determined, and many
registration techniques are not equipped to supply a more
complex transformation. The most common application area
is the human head.

6. INTERACTION

V. Interaction

a. Interactive

1. Initialization supplied

2. No initialization supplied

b. Semi-automatic

1. User initializing

2. User steering/correcting

3. Both

c. Automatic

Concerning registration algorithms, three levels of inter-
action can be recognized.Automatic, where the user only
supplies the algorithm with the image data and possibly
information on the image acquisition.Interactive, where
the user does the registration himself, assisted by software
supplying a visual or numerical impression of the current
transformation, and possibly an initial transformation guess.
Semi-automatic, where the interaction required can be of two
different natures: the user needs toinitialize the algorithm,
e.g.,by segmenting the data, orsteerthe algorithm,e.g.,by
rejecting or accepting suggested registration hypotheses.

Many authors strive for fully automated algorithms, but it
can be discussed whether this is desired inall current clinical
applications. The argument is that many current methods
have a trade-off between minimal interaction and speed,
accuracy, or robustness. Some methods would doubtlessly
benefit if the user were “kept in the loop”, steering the op-
timization, narrowing search space, or rejecting mismatches.
On the other hand, many methods spent over 90% of their
computation time examining registrations at a resolution level
that would hardly benefit from human intervention. If they
perform robustly, such methods are better left automated.
Furthermore, many applications require registration algo-
rithms to operate objectively, and thus allow no human inter-
action. Human interaction also complicates the validation of
registration methods, inasmuch as it is a parameter not easily
quantified or controlled.
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Extrinsic methods are often easilyautomated, since the
marker objects are designed to be well visible and detectable
in the images involveda. Sometimes users are required to
roughly point out the marker region, or supply a seed point
located in the marker (semi-automatic). Of the intrinsic
methods, theanatomical landmarkandsegmentation based
methods are commonlysemi-automatic (user initializing),
and the geometrical landmarkand voxel property based
methods are usuallyautomated. Fully interactivemethods are
reported on very little in the recent literature (Morriset al.,
1993; Pietrzyket al., 1994; Soltyset al., 1995). Perhaps,
like many methods that rely primarily on the proper use
of good visualization software, they are –often undeserved–
considered trivial.

7. OPTIMIZATION PROCEDURE

VI. Optimization procedure

a. Parameters computed

b. Parameters searched for

The parameters that make up the registration transforma-
tion can either becomputeddirectly, i.e., determined in an
explicit fashion from the available data, orsearched for,
i.e.,determined by finding an optimum of some function de-
fined on the parameter space. In the former case, the manner
of computation is completely determined by the paradigm.
The only general remark we can make is that the use of
computationmethods is restricted almost completely to appli-
cations relying on very sparse information,e.g.,small point
setsb. In the case ofsearchingoptimization methods, most
registration methods are able to formulate the paradigm in a
standard mathematical function of the transformation param-
eters to be optimized. This function attempts to quantify the
similarity as dictated by the paradigm between two images
given a certain transformation. Such functions are generally
less complex in monomodal registration applications, since
the similarity is more straightforward to define. Hopefully,
the similarity function is well-behaved (quasi-convex) so one
of the standard and well-documented optimization techniques
can be used. Popular techniques are Powell’s method (Levin
et al., 1988; Hill et al., 1991b; Tsuiet al., 1993; Ettinger
et al., 1994b; Ettingeret al., 1994a; Hataet al., 1994; van
Herk and Kooy, 1994; Kooyet al., 1994; Lemieuxet al.,
1994a; Andersson, 1995; Anderssonet al., 1995; Collignon
et al., 1995a; Leszczynskiet al., 1995; Bani-Hashemiet al.,
1996; Gilhuijs et al., 1996; Gottesfeld Brown and Boult,
1996; Maeset al., 1996), the Downhill Simplex method (Hill

asee,e.g., (Wanget al., 1995)
bsee,e.g., (Arun et al., 1987; Hill et al., 1991a; Hillet al., 1993b)

et al., 1991b; Gilhuijs and van Herk, 1993; Hillet al., 1993a;
Hoh et al., 1993; Leung Lamet al., 1993; van Herk and
Kooy, 1994; Kooyet al., 1994; Li et al., 1994b; Meyer
et al., 1995; Slomkaet al., 1995; Eberlet al., 1996), Brent’s
method and series of one-dimensional searches (Bacharach
et al., 1993; Münch and R¨uegsegger, 1993; Ault and Siegel,
1994; Pettiet al., 1994; Ault and Siegel, 1995; Ardekani
et al., 1995; McParland and Kumaradas, 1995; Hristov and
Fallone, 1996), Levenberg-Marquardt optimization (Taubin,
1993; Hemleret al., 1994a; Hemleret al., 1994b; Szelisky
and Lavallée, 1994; Szeliski and Lavall´ee, 1994; Bainville
et al., 1995; Hamadehet al., 1995b; Hamadehet al., 1995c;
Lavallée and Szeliski, 1995; Unseret al., 1995; Lavallée
et al., 1996a; Szeliski and Lavall´ee, 1996), Newton-Raphson
iteration (Fright and Linney, 1993; Woodset al., 1993; Zuo
et al., 1996), stochastic search methods (Milleret al., 1993;
Viola and Wells III, 1995; Viola, 1995; Wells IIIet al.,
1995; Viola et al., 1996; Wells III et al., 1996), gradient
descent methods (Zuket al., 1994; Peraultet al., 1995;
Buzug and Weese, 1996; Christensenet al., 1996; Cuisenaire
et al., 1996), genetic methods (Hillet al., 1993a; Hillet al.,
1994; Hill and Hawkes, 1994; Staib and Xianzhang, 1994;
Kruggel and Bartenstein, 1995; Crosset al., 1996), simulated
annealing (Liuet al., 1994), geometric hashing (Gu´eziec and
Ayache, 1992; Ayacheet al., 1993; Pajdla and van Gool,
1995), and quasi-exhaustive search methods (Bettinardiet al.,
1993; van den Elsen and Viergever, 1993; Hua and Fram,
1993; Cox and de Jager, 1994; van den Elsen, 1994; van den
Elsenet al., 1994; Mendonc¸aet al., 1994; Maintzet al., 1994;
Maintzet al., 1996c; van den Elsenet al., 1995; Maintzet al.,
1995; Dong and Boyer, 1996; Maintzet al., 1996b). Many
of these methods are documented in (Presset al., 1992).
Frequent additions are multi-resolution (e.g.,pyramid) and
multi-scale approaches to speed up convergence, to reduce
the number of transformations to be examined (which is
especially important in the quasi-exhaustive search methods)
and to avoid local minima. Some registration methods
employ non-standard optimization methods that are designed
specifically for the similarity function at hand, such as the
ICP algorithm (Besl and McKay, 1992; Simonet al., 1994;
Feldmar and Ayache, 1994; Maureret al., 1995a; Pajdla and
van Gool, 1995; Simonet al., 1995a; Betting and Feldmar,
1995; Bettinget al., 1995; Cuchetet al., 1995; Feldmaret al.,
1995; Elliset al., 1996; Feldmaret al., 1996; Feldmar and
Ayache, 1996; Goriset al., 1996), created forrigid model
based registration. Many applications use more than one
optimization technique, frequently a fast but coarse technique
followed by an accurate yet slow one.
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8. MODALITIES INVOLVED IN THE
REGISTRATION

Note: The lists of modalities below, in exception, are not
meant to be theoretically complete, but give the modality
instances encountered in recent literature.

VII. Modalities involved

a. Monomodal

1. Auto-radiographic

2. CT or CTA

3. MR

4. PET

5. Portal

6. SPECT

7. US

8. Video

9. X-ray or DSA

b. Multimodal

1. CT—MR

2. CT—PET

3. CT—SPECT

4. DSA—MR

5. PET—MR

6. PET—US

7. SPECT—MR

8. SPECT—US

9. TMSa—MR

10. US—CT

11. US—MR

12. X-ray—CT

13. X-ray—MR

14. X-ray—portal

15. X-ray—US

16. Video—CT

17. Video—MR

c. Modality to model

1. CT
aTranscranial magnetic stimulation.

2. MR

3. SPECT

4. X-ray

d. Patient to modality

1. CT

2. MR

3. PET

4. Portal

5. X-ray

Four classes of registration tasks can be recognized based
on the modalities that are involved. Inmonomodalapplica-
tions, the images to be registered belong to the same modality,
as opposed tomultimodalregistration tasks, where the images
to be registered stem from two different modalities. In
modality to modelandpatient to modalityregistration only
one image is involved and the other “modality” is either
a model or the patient himself. Hence we use the term
“modality” in a loose sense, not only applying to acquired
images, but also to mathematical models of anatomy or phys-
iology, and even to the patient himself. Such inclusions are
necessary to properly type-cast the four categories according
to the actual registration task to be solved. At a first glance,
this classification may seem paradoxical;patient to modality
may seem a registration task appearing in any application.
However, the classification is disjunct and closed if only
the actual coordinate systems that need to be related are
considered, i.e., the coordinate systems referring to the actual
modalities named in theproblem statement. For example:

� For diagnostic purposes, two myocardial SPECT images
are acquired of the patient, under rest and stress condi-
tions. Their registration is a monomodal application.

� To relate an area of dysfunction to anatomy, a PET image
is registered to an MR image. This is a multimodal
application.

� To register an MR to a PET image, a PET image image
is first simulatedfrom the MR image, and the real and
simulated PET images are registered. This is still a
multimodal application.

� An example of modality to model is the registration
of an MR brain image to a mathematically defined
compartimental model of gross brain structures.

� In radiotherapy treatment, the patient can be positioned
with the aid of registration of in-position X-ray simulator
images to a pre-treatment anatomical image. Although
the registration task is performed using only the images
acquired, the actual task of patient positioning is clearly
an example ofpatient to modalityregistration.
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The patient to modalityregistration tasks appear almost
exclusively in intra-operative (Bucholzet al., 1994; Harmon
et al., 1994; Hendersonet al., 1994; Lemieuxet al., 1994a;
Lavallée et al., 1994; Leaet al., 1994; Li et al., 1994b;
Simon et al., 1994; Wanget al., 1994a; Bettinget al.,
1995; Betting and Feldmar, 1995; Bainvilleet al., 1995;
Cuchetet al., 1995; Edwardset al., 1995a; Edwardset al.,
1995b; Hamadehet al., 1995c; Hamadehet al., 1995a;
Lea et al., 1995a; Leaet al., 1995b; Maureret al., 1995b;
Miaux et al., 1995; Ryanet al., 1995; Simonet al., 1995b;
Simonet al., 1995a; Evanset al., 1996b; Fuchset al., 1996;
Lavalléeet al., 1996b; Lavallée, 1996; Peterset al., 1996)
and radiotherapy (Bijhold, 1993; Gall and Verhey, 1993;
Leung Lamet al., 1993; Troccazet al., 1995; Vassalet al.,
1995; Gilhuijset al., 1996) applications.Modality to model
can be applied in gathering statistics on tissue morphology
(e.g.,for finding anomalies relative to normalized structures),
and to segmentation tasks (Bajcsyet al., 1983; Rizzoet al.,
1995; Amit and Kong, 1996; Cuisenaireet al., 1996; Jain
et al., 1996). Monomodaltasks are well suited for growth
monitoring, intervention verification, rest-stress comparisons,
ictal-interictal comparisons, subtraction imaging (also DSA,
CTA), and many other applications. The applications of
multimodal registration are abundant and diverse, predomi-
nantly diagnostic in nature. A coarse division would be into
anatomical-anatomicalregistration, where images showing
different aspects of tissue morphology are combined, and
functional-anatomical, where tissue metabolism and its spa-
tial location relative to anatomical structures are relateda.

9. SUBJECT

VIII. Subject

a. Intrasubject

b. Intersubject

c. Atlas

When all of the images involved in a registration task are
acquired of a single patient, we refer to it asintrasubject
registration. If the registration is accomplished using two
images of different patients (or a patient and a model), this
is referred to asintersubject registration. If one image
is acquired from a single patient, and the other image is
somehow constructed from an image information database
obtained using imaging of many subjects, we name itatlas
registration. In literature, many instances of registration of

aReferences to monomodal and multimodal applications will be given in the
objectsection, since they are numerous, and moreover many papers are not
specific to one of the four application categories.

a patient image to an image of a “normal” subject is termed
atlas registration. Although this definition is as good as ours,
we refer to this type of registration asintersubject, to keep
the class distinctions clear.Intrasubjectregistration is by far
the most common of the three, used in almost any type of
diagnostic and interventional procedure.Intersubject(Bajcsy
et al., 1983; Geeet al., 1993; Miller et al., 1993; Szeliski
and Lavallée, 1994; Szelisky and Lavall´ee, 1994; Sandor and
Leahy, 1994; Collinset al., 1995; Geet al., 1995; Haller
et al., 1995; Sandor and Leahy, 1995; Thirion, 1995; Amit
and Kong, 1996; Declercet al., 1996; Fanget al., 1996;
Gee and Haynor, 1996; Halleret al., 1996; Thirion, 1996b)
and atlas registration (Collinset al., 1994a; Collinset al.,
1994b; Davatzikos and Prince, 1994; MacDonaldet al., 1994;
Barberet al., 1995; Christensenet al., 1995b; Christensen
et al., 1995a; Slomkaet al., 1995; Christensenet al., 1996;
Cuisenaireet al., 1996; Davatzikoset al., 1996; Feldmar
et al., 1996) appear mostly in3D/3D MR or CT brain image
applications. The nature of the registration transformation is
mostlycurved; these applications are alwaysintrinsic, either
segmentation basedor voxel property based, using the full
image content. A proper (manual) initialization is frequently
desired. Some applications userigid transforms, but their
clinical use is limited. Others useanatomical landmarksfor a
deformation basis of acurvedtransformation; unfortunately
such applications often require the transformation in large
image areas to be interpolated from the nearest landmark
transformations, which may prove unreliable. The use of
intersubjectandatlas matching can notably be found in the
areas of gathering statistics on the size and shape of specific
structures, finding (accordingly) anomalous structures, and
transferring segmentations from one image to another.

10. OBJECT

IX. Object

a. Head

1. Brain or skull

2. Eye

3. Dental

b. Thorax

1. Entire

2. Cardiac

3. Breast

c. Abdomen

1. General
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2. Kidney

3. Liver

d. Pelvis and perineum

e. Limbs

1. General

2. Femur

3. Humerus

4. Hand

f. Spine and vertebrae

The above list is, again, not theoretically complete, but
composed of those imaging areas encountered in recent
literature. Almost all reviewed papers will be cited in this
sectiona, focussing on the paradigm used. We will break
down this section according to the areas mentioned in the list.
Hopefully this will give an idea of the specific approaches
and trends associated with each image area. Since many
papers concern global head registration (177 out of over
300 reviewed papers), this subsection will be further divided
according to the modalities involved.Note that many papers
may have more than one application area, even though they
only demonstrate a registration method in one area.This
implies that some areas,e.g.,CT-SPECT registration, appear
to have been poorly examined, while in fact good methods
have been developed in other areas that are instantly or easily
transfered to the problem at hand. Many general papers do
not detail a specific medical registration application. Such
papers are mentioned at the end of this section.

10.1. Registration of head images
Many possible registration tasks can be defined on images
of the human head, including all types of monomodal,
multimodal, model, and patient registration of a plethora of
image modalities in various diagnostic and interventionist
settings. This makes for the prevalence of papers concerned
with registration of images of the head, possibly along with
the fact that the head can be considered a rigid body in many
applications, while such a constraint cannot be met in many
thoracic, abdominal, pelvic, and spinal images.

10.1.1. Monomodal applications: CT
Intrasubject 3D CT registrationwas performed by Gu´eziec
and Ayache (Gu´eziec and Ayache, 1992; Ayacheet al., 1993;
Guéziec, 1993) by registering “crest lines” (extremal lines of
the principal curvature) of surfaces. This technique was later

aThe reader is warned that readability was not foremost in our minds at the
time of writing. Rather, this section serves a reference purpose.

adapted by Thirion (Thirion, 1994; Thirion, 1996a), using
only the extremal points of the crest lines. Van Herk (van
Herk and Kooy, 1994) and Xiao (Xiao and Jackson, 1995)
employedsurfacesfor registration by Chamfer matching, a
technique which uses a pre-computed distance map for fast
computation of the distance between two surfaces (Borgefors,
1988). Liu (Liu et al., 1994) also used a Chamfer-like
technique, employingcores instead of surfaces, with a full
scale-space distance metric. A core can be defined as a multi-
scale instance of a medial axis,i.e., a structure, supported
by a quench-like function, that runs “in the middle” of
some perceived object. Petti (Pettiet al., 1994) performed
registration by maximizing the overlap, or, more precisely, by
minimizing the “exclusive or” (XOR) overlap ofsegmented
solid structures. Finally, Lemieux (Lemieuxet al., 1994b;
Lemieux and Jagoe, 1994) studied the accuracy offrame-
basedregistration relative to the accuracy ofmarker detec-
tion.

3D morphing of CT skullswas performed by Chris-
tensen (Christensenet al., 1996), whoelastically morphed
infants skulls to anatlas by locally minimizing the inten-
sity difference, after an initialrigid alignment based on
anatomical landmarks.Fang (Fanget al., 1996) performed
interspecies morphing of the skull based onanatomical land-
marks,between human and macaque skulls.

Local elastic 3D intrasubject CTA registrationwas per-
formed by Bani-Hashemi (Bani-Hashemiet al., 1996) and
Yeung (Yeunget al., 1994), by extending methods used in
DSA to 3D. The former used the DSC criterion, while the
latter searches for a matching voxel by finding the voxel
closest (in the squared sense) in grey value.

10.1.2. Monomodal applications: rigid and affine MR reg-
istration

Fully interactive rigid registration methods are described by
Morris (Morris et al., 1993) and Pietrzyk (Pietrzyket al.,
1994). Alpert (Alpertet al., 1990) registers by alignment of
theprincipal axesand the center of gravity. Ettinger (Ettinger
et al., 1994b; Ettingeret al., 1994a) also uses these for a pre-
registration, but then refines the transformation using a semi-
automatically extracted intra-cranialsurfacewith a Gaussian
weighted distance function. Approximately the same method
is implemented by Rusinek (Rusineket al., 1993), which does
not weigh the distance, but supplies anaffineinstead of a rigid
transformation. Their method is (an extension of) the well-
known “head-hat”surfacematching technique, minimizing
the squared distance between two segmented (skin) surfaces,
originally presented by Pelizzari and co-workers, including
Levin (Levin et al., 1988), who documented its use on the
current application.Rigid surfacebased Chamfer matching
was used by Jiang (Jianget al., 1992a; Jianget al., 1992b)
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on manually segmented surfaces, and extended by Zuk (Zuk
et al., 1994), who added hierarchical surface point sam-
pling. Varioussurface basedmethods using Besl’s (Besl and
McKay, 1992) ICP algorithm were implemented by Feldmar.
In (Feldmar and Ayache, 1994), ICP was used directly on
segmented surfacesto find anaffinetransformation. In (Feld-
mar and Ayache, 1996) the segmented surface was elaborated
to an 8D structure: not only the spatial coordinates were
used in the cost (distance) function computation, but also the
surface normals and the principal curvatures. In (Feldmar
et al., 1996) the ‘surface’ needed no segmentation, since the
entire 3D image was considered to be a surface in 4D (spatial
coordinates plus intensity) space.

Rigid registrationbased onsegmented curveswas done
by Guéziec (Guéziec, 1993), by using the crest lines of a
surface, which was extracted by using adeformable model.
Thirion (Thirion, 1994; Thirion, 1996a) also employed crest
lines, but used only their curvature-extremalpoints in the
registration process. Pennec (Pennec and Thirion, 1995)
examined the precision of this method.

Collignon (Collignonet al., 1994) performedrigid regis-
tration by usingsegmentation: each set is segmented using
K-means clustering, and the registration is performed by
minimizing the “fuzziness” between corresponding segments.
He later used clustering of the joint histogram of the images
to find the transformation in afull image contentbased
method. Hill (Hill et al., 1994; Hill and Hawkes, 1994)
used a similar method based on minimizing the histogram
dispersion using the third order moment of the histogram.
Other full image contentbased methods were proposed by
Hajnal and Bandari. The former (Hajnalet al., 1995a; Hajnal
et al., 1995b) performedrigid registration by minimizing the
squared intensity differences in the brain, which needs to
be segmented first. The latter (Bandariet al., 1994) finds
translation between the images to be registered by gluing
them together and regarding the compound as a time series.
The second image is then registered to the first by finding
the occurrence of the cepstral echo of the first image in the
time series. Finally, Collignon (Collignonet al., 1995a) and
Maes (Maeset al., 1996) (rigid transformations), simultane-
ously with Viola (Viola and Wells III, 1995; Viola, 1995;
Viola et al., 1996) (affineand higher order transformations)
used maximization of the mutual information,i.e.,the relative
entropy, of the joint histogram to achieve registration.

Several methods, amongst whichframe and mould
based registration, head-hatsegmented surfaceregistration,
anatomical landmarkbased methods, and ratios of voxel vari-
ance based methods, where compared by Strother (Strother
et al., 1994).

10.1.3. Monomodal applications: curved MR registration
Elastic deformation of segmented curves or surfacesto corre-
sponding structures was performed on two-dimensional slices
by Nakazawa (Nakazawa and Saito, 1994), where the correct
slices needed to be selectedmanually. The same approach,
except fully in three dimensionswas followed by Chris-
tensen and Haller (Christensenet al., 1995a; Halleret al.,
1995; Halleret al., 1996), using a fluid model morphing,
Davatzikos (Davatzikos and Prince, 1994; Davatzikoset al.,
1996; Davatzikos, 1996), using elastic deformation of the
brain and ventricular surface, Sandor (Sandor and Leahy,
1994; Sandor and Leahy, 1995), using elastic deformation
of morphologically smoothed Marr-Hildreth edges, MacDon-
ald (MacDonaldet al., 1994), and Thirion (Thirion, 1995;
Thirion, 1996b), using elastic deformations usingdemons,
where demons are particles than can either push or pull,
depending on what side of the boundary they are on.

Collins (Collinset al., 1994a; Collinset al., 1994b; Collins
et al., 1995) performedcurvedregistration by local optimiza-
tion of the cross-correlation based on intensity and gradient
values extracted at several scales of resolution. Ge (Geet al.,
1995) employeduser definedcortical traces and sub-cortical
landmarks, and interpolated the curved transformation in
undefined areas. Gee (Geeet al., 1993; Geeet al., 1994; Gee
et al., 1995a; Gee and Haynor, 1996) used Bayesian modeling
applied to varioussegmentedstructures. Kruggel (Kruggel
and Bartenstein, 1995) performedelastic registration by
minimizing the local squared intensity differences, after an
initial global Chamfer matching. Finally, Miller (Milleret al.,
1993) performedcurved registration by using multi-valued
MR images, (T1 weighted, T2 weighted, segment values,
etc.) by minimizing the squared distance error and the elastic
energy.

10.1.4. Monomodal applications: PET
All of the encountered PET—PET registration methods of
brain images are3D and rigid, excepting Unser, who pro-
vides anaffineregistration. Pietrzyk (Pietrzyket al., 1994)
designed a fullyinteractive method using graphical tools,
e.g.,rendering, cut-planes, edges,etc.Zuk (Zuk et al., 1994)
does Chamfer matching, improved with hierarchical data
sampling, onsegmentedsurfaces. The remaining methods
are full image contentbased: Andersson (Andersson, 1995)
registers by optimizing the cross-correlation values in image
areas near edges, where edges are defined by thresholding
gradient images of the Gaussian filtered original. Eberl (Eberl
et al., 1996) and Unser (Unseret al., 1995) find the optimal
transformation by optimizing the SAD (sum of absolute
differences of intensity values). Finally, Hoh (Hohet al.,
1993) also uses the SAD, and compares it to results obtained
by optimizing the SSC criterion.
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10.1.5. Monomodal applications: SPECT
The method of Eberl (Eberlet al., 1996) from the previous
section, using the SAD, also applies to SPECT registration.
A similar 3D rigid, using full image contentmethod, based
on minimizing the sum of squared intensity differences, was
suggested by Lange (Langeet al., 1993). Otherfull image
contentbased methods were implemented by Barber, Junck,
Maintz, Meunier, and Pav´ıa. Barber (Barberet al., 1995)
finds anglobal affinetransformation by minimizing the optic
flow field. Meunier also uses minimizes the optic flow field,
but finds alocal curvedtransformation. For a pre-registration,
he uses the optic flow method globalrigidly. Junck (Junck
et al., 1990) finds 2Drigid transformations by optimizing
the cross-correlation. Also, the image midline in transversal
images is found by optimizing the correlation between the left
and mirrored right part of the image. Maintz (Maintzet al.,
1996a) and Pav´ıa (Pav´ıa et al., 1994) also directly use the
cross-correlation, but in a3D rigid manner. The former uses
an hierarchical approach to optimization, the latter employs
a pre-registration using principal axes. Zubal (Zubalet al.,
1995) uses the head-hat method onsegmented surfaces, pos-
sibly combined withuser defined anatomical landmarksto
find a3D rigid transformation.3D rigid methods based solely
on user defined anatomical landmarksare compared with
methods based onexternal markers(bothautomaticallyand
semi-automaticallydetected) by Leslie (Leslieet al., 1995).
Finally, two interactive 3D rigid methods are reported on:
Rubinstein (Rubinsteinet al., 1996), who usesanatomical
landmarks, and Stapleton (Stapletonet al., 1995), where the
user defines the Tailarach coordinate system by pointing out
the midline, the AP (anterior-posterior) center line, and the
OM (orbitomeatal) line, in the latter case aided by a single
lead marker.

10.1.6. Monomodal applications: portal images
Since portal imaging appears exclusively in radiotherapy
treatment settings (in fact, a portal image is obtained by
measuring the transmission of the radiation beam, and hence
is a 2D image), applications are only found in this specific
field. Only three method instances were found: Dong (Dong
and Boyer, 1996) and Hristov (Hristov and Fallone, 1996)
find respectively aglobal affineand aglobal rigid transforma-
tion by optimizing the cross-correlation. Radcliffe (Radcliffe
et al., 1993; Radcliffeet al., 1994) uses basically the same
method, but speeds it up by using pseudo-correlation, which
limits the computations to randomly selected small regions.

10.1.7. Monomodal applications: DSA
Venot (Venotet al., 1983; Venotet al., 1984; Venot and
Leclerc, 1984) introduced the DSC criterion for finding a
rigid global registration of the X-ray images involved in

DSA. Hua (Hua and Fram, 1993) compared the registration
performance of DSC on original images, DSC on grey-
valued edge images, and of cross-correlation optimization.
Leclerc (Leclerc and Benchimol, 1987) used generalized
cross-correlation for finding alocal curvedtransformation,
in a computedway by implementation in a Fourier transfer-
function setting. Cox (Cox and de Jager, 1994), finally,
performedlocal curvedregistration by locally minimizing the
intensity variance.

10.1.8. Other monomodal applications
Shields (Shieldset al., 1993) registered2D time seriesof
US carotid images in anaffine way by locally matching
the first order image grey value Taylor expansion, and
validated the transformation by checking cross-correlation
values. Zhao (Zhaoet al., 1993)affinelyregistered slices of
auto-radiographic imagery (scintigraphic images of cadaver
slices), by minimizing displacement ofmanually segmented
contours, or directly by minimizing the intensity value differ-
ences between images.

10.1.9. Multimodal applications: CT—MR
Unless otherwise stated, all of the registrations in this section
supplyglobal rigid transformations.

Hill (Hill et al., 1991a; Hillet al., 1993b) useduser iden-
tified anatomical landmarks, tocomputethe transformation.
Identified landmarks, eitheranatomicalor externally marked,
were also used by Maguire (Maguireet al., 1991), but coarse-
ly, since theaffine transformation was based on optimizing
the cross-correlation in areas around the landmarks. Other
full image contentbased methods using cross-correlation
were proposed by van den Elsen (van den Elsenet al.,
1994), using the entire image, where the CT grey values are
remapped in a local linear fashion to improve correspondence
with the MR image, and van den Elsen (van den Elsen and
Viergever, 1993; van den Elsen, 1994; van den Elsenet al.,
1995) and Maintz (Maintzet al., 1994; Maintzet al., 1996c),
optimizing cross-correlation of ridgeness images extracted
from the original modalities. Maintz later (Maintzet al.,
1995; Maintzet al., 1996b) included optimization of edge-
ness cross-correlation and compared them.

Wang (Wanget al., 1994b; Wanget al., 1995) and Mau-
rer (Maureret al., 1993; Maureret al., 1995b) usedinvasive
fiducial markers, and compared them tosegmented surface
registration (Maureret al., 1994). Maurer also integrated the
two methods into a single one (Maureret al., 1995a).

Other segmented surfacebased methods were imple-
mented by Ge, Hemler, Jiang, Levin, Petti, Taneja, van Herk,
and Kooy. Ge (Geet al., 1996) used an ICP variation for the
optimization. Hemler (Hemleret al., 1994a; Hemleret al.,
1994b; Hemleret al., 1995b; Hemleret al., 1995a; Hemler
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et al., 1996) used an automatically extracted surface with
manual correction. Levin (Levinet al., 1988) used the head-
hat method. Jiang (Jianget al., 1992b) and Taneja (Taneja
et al., 1994) used the Chamfer matching technique, which
was also used by van Herk (van Herk and Kooy, 1994), and
Kooy (Kooy et al., 1994), except in their case the surface
segmentation wasautomated. Petti (Pettiet al., 1994) found
an affine transformation by minimizing the “exclusive or”
overlap of segmented solids. One author implemented a non-
surface basedsegmentationbased method: Collignon (Col-
lignonet al., 1994) proposed the minimization of “fuzziness”
in corresponding segments found by K-means clustering of
the original images.

Various authors usedsurface basedregistrations in com-
parisons to other methods. Hemler (Hemleret al., 1995c)
compared it to aframe based method, and optimization
of the cross-correlation of remapped grey values. Vander-
meulen (Vandermeulenet al., 1995) compared surface based
methods toframe based andanatomical landmarkbased
methods. Hill (Hill et al., 1993a) compared surface based
registration and registration by minimizing the variance of
intensity ratios.

Besides the above mentioned cross-correlation methods,
other full image contentbased methods were proposed by
Collignon, Maes, and Wells. Collignon (Collignonet al.,
1995b) used clustering of the joint histogram to find the
optimal transformation. He also implemented optimizing the
mutual information of the joint histogram, (Collignonet al.,
1995a) a method also used by Maes, (Maeset al., 1996) and
Wells (Wells III et al., 1995; Wells IIIet al., 1996).

West (West et al., 1996) compared many (13)intrinsic
registration methods using a large image database with a
“gold” registration standard obtained usinginvasive fiducial
markers.

10.1.10. Multimodal applications: CT—PET
Rigid 3D transformations were performed by Alpert (Alpert
et al., 1990) using the imagesprincipal axesand center of
gravity, by Chen (Chenet al., 1987) and Levin (Levinet al.,
1988) using the head-hat method, and Pietrzyk (Pietrzyk
et al., 1994), who used a fullyinteractivemethod.Affinereg-
istration was obtained by Wahl (Wahlet al., 1993), employing
user identifiedanatomical landmarksandexternal markers,
and Maguire (Maguireet al., 1991), who optimized cross-
correlation around such user identified anatomical landmarks
and external markers. The latter method is also used to supply
anelastictransformation.

10.1.11. Multimodal applications: CT—SPECT
Maguire (Maguireet al., 1991) also applied his method to
CT—SPECT registration. The only other instance we found

was van Herk (van Herk and Kooy, 1994), who usedrigid
Chamfer matching onautomaticallyextracted surfaces.

10.1.12. Multimodal applications: DSA—MR
Hill (Hill et al., 1991b) usedhand drawnstructures, com-
bined with a distance minimization which incorporated use of
anatomical knowledge torigidly register the DSA vessel tree
to the MR surface. Henri (Henriet al., 1992) performedrigid
registration by least-squares fittinguser identified anatomical
landmarks. The landmarks identified in the MR where
projected into the (DSA) plane, after applying therigid
transformation to the MR image.

10.1.13. Multimodal applications: PET—MR
Pietrzyk (Pietrzyket al., 1994) performsrigid registration by
using various graphical objects like edges and cut-planes in
a a fully interactivemanner. Ge (Geet al., 1994) uses a
more protocolized method, where the user identifies planes,
starting with the inter-hemispheric fissure (midsagittal plane)
to provide a registration. Meyer (Meyeret al., 1995) performs
affine registration usinguser identifiedpoints, lines and
planes simultaneously in a weighted way. His method uses –
next to Simplex optimization– distance error minimization by
the BFGS (Broyden-Fletcher-Goldfarb-Shanno) approach.

Neelin (Neelinet al., 1993) finds arigid transformation by
means ofuser identified anatomical landmarks. Evans (Evans
et al., 1989; Evanset al., 1996a) also uses these, com-
bined with afoam mouldfor patient immobilization. Later
Evans (Evanset al., 1991) usedfiducial marksprovided
by a fiducial band strapped to the head, to find anaffine
transformation. Maguire (Maguireet al., 1991) useduser
identified anatomical landmarksand external markers, and
found anaffineor curved transformation by optimizing the
cross-correlation locally in the identified areas. Wahl (Wahl
et al., 1993) uses the same points directly to find anaffine
transformation.

Rigid surface basedmethods were employed by
Chen (Chenet al., 1987), Levin (Levinet al., 1988), and
Staib (Staib and Xianzhang, 1994) using the head-hat
method. Turkington (Turkingtonet al., 1993; Turkington
et al., 1995) used the same method, butautomatedthe
surface segmentation. Tsui (Tsuiet al., 1993) used the
head-hat method, but computed the distance in 2D for more
efficiency. Jiang (Jianget al., 1992b) uses multi-resolution
Chamfer matching. Ardekani (Ardekaniet al., 1994;
Ardekani et al., 1995) uses segmentation obtained by
K-means clustering applied to the MR.Rigid registration is
then performed by minimizing the PET grey value variance
in each segment.

Kruggel (Kruggel and Bartenstein, 1995) also uses Cham-
fer matching, but only as a pre-registration. The final transfor-
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mation iselasticby locally finding the optimal shift minimiz-
ing the squared intensity differences. Otherfull image content
based methods were implemented by Andersson, Miller,
Woods, Collignon, Maes, and Wells: Andersson (Andersson
et al., 1995) performedrigid registration by simulating a
PET image from the MR (by using a simple segmentation,
and assigning a plausible radioactivity to each segment),
and registering the simulated and real PET image using
optimization of cross-correlation near edges, where the edges
are obtained by thresholding a gradient image. Miller (Miller
et al., 1993) performedcurvedregistration using multi-valued
MR images, (T1 weighted, T2 weighted, segment values,
etc.) by minimizing the squared distance error and the elastic
energy. Woods performedrigid registration by minimizing
the standard deviation of the PET values corresponding to a
single MR grey value. Collignon (Collignonet al., 1995a),
Maes (Maeset al., 1996) and Wells (Wells IIIet al., 1995;
Wells III et al., 1996) performedrigid registration by opti-
mizing the mutual information contained in the joint image
histogram.

Studholme, Strother, and West compared a large number
of rigid registration methods: the former (Studholmeet al.,
1995b; Studholmeet al., 1995a) used optimization of cross-
correlation, minimization of intensity variance, minimization
of joint histogram entropy and dispersion by means of the
third order moment, and manuallyanatomical landmark
registration. Strother (Strotheret al., 1994), comparedframe
and mould based registration, head-hatsegmented surface
registration,anatomical landmarkbased methods, and ratios
of voxel variance based methods. West (West et al., 1996)
compared many (11) intrinsic methods to a registration based
on invasive fiducial markers. Finally, Wang (Wanget al.,
1996a) investigated the use of registration in a clinical mea-
surement study.

10.1.14. Multimodal applications: SPECT—MR
Rubinstein (Rubinsteinet al., 1996) and Malison (Malison
et al., 1993) performedrigid registrationinteractivelyusing
anatomical landmarks. Maguire (Maguireet al., 1991) also
useduser identified anatomical landmarks, or user identified
external markers, but performedaffineor curvedregistration
by locally optimizing the cross-correlation in the identified
areas. Kruggel (Kruggel and Bartenstein, 1995) after an
initial Chamfer match using segmented surfaces, performed
elasticregistration by minimizing the local squared intensity
differences. Maintz (Maintzet al., 1996d) computed a
rigid transformation by optimizing the cross-correlation of
the “edgeness” of the skin, computed using morphological
operators. The other reported methods are allrigid and
surface based:Turkington (Turkingtonet al., 1993) used
the head-hat method with automated surface segmentation.

Jiang (Jianget al., 1992b) used multi-resolution Chamfer
matching on semi-automatically segmented surfaces, as did
Rizzo (Rizzoet al., 1995). Finally P´eria (Périaet al., 1994)
performed registration using the facial surface. Since such
a surface is absent in a detailed way in SPECT images, a
calibrated laser range facial surface was used instead.

10.1.15. Multimodal applications: US or TMS—MR
Since both TMS and US transducers can be hand-held de-
vices, registration is often obtained usingcalibrated coordi-
nate systems, under the assumption that strict patient immobi-
lization can be maintained. A registration based on calibrated
coordinate system is by definitionrigid. Ettinger (Ettinger
et al., 1996) registered TMS to pre-TMS acquired MR via
calibrating the TMS probe to a laser range scanner. The laser
skin surface is then registered to the automatically segmented
corresponding surface obtained from the MR. Erbe (Erbe
et al., 1996) registered intra-operative US to pre-operative
MR via a pre-operative US calibrated to the intra-operative
one. The pre-operative US (and hence, by calibration, the
intra-operative one) is registeredrigidly to the MR by means
of user identified anatomical landmarks. Hata (Hataet al.,
1994) calibrated 2D US to a 3D MR system, but refined
the obtained rigid registration by local Chamfer matching on
semi-automatically extracted contours and surfaces.

10.1.16. Multimodal applications: X-ray
Betting (Betting and Feldmar, 1995) registered MR (or CT) to
X-ray images (2D/3D) by a “silhouette” method:automatic
extraction of the external contours in all involved images,
followed by3D rigidly transforming the MR, projecting the
transformed contours onto the X-ray plane, and minimizing
the contour distance using a variation of the ICP algorithm.
Lavallée (Lavallée and Szeliski, 1995; Lavall´eeet al., 1996a)
registered a3D CT to two X-ray images, acquired at a
known angle to one another. From the X-ray planes in 3D
space, the (segmented) external contours are projected out
of plane, creating a bundle. The intersection of the two X-
ray bundles defines an interior into which the CT isrigidly
placed, minimizing the distance of the CT external surface to
the bundles.

Both Betting and Lavall´ee aim to use their methods in a
patient to modalityintra-operative setting, using the 2D X-
ray images for intermediaries. Therefore, their methods also
appear in thepatient to modalitysection, if experiments have
been conducted using real patient data.

In radiotherapy literature, three instances ofrigid 2D/2D
X-ray to portal image registration were found. Eilertsen (Eil-
ertsenet al., 1994) finds the radiation field edges by means of
a Radon transform. The X-ray (simulator) image is then reg-
isteredautomaticallyto the portal images by aligning the field
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edge corners. Ding (Dinget al., 1993) also useslandmarks,
either geometricalor anatomical, but interactivelydefined.
Leszczynski (Leszczynskiet al., 1995) needs the field edges
to be definedinteractively, then performs Chamfer matching
to find the correct transformation.

10.1.17. Modality to model registration
If models are obtained using statistics on different image data,
the distinction betweenmodality to modeland modality to
atlas registration is often vague. We subjectively draw the
line between use offuzzy sets(atlas) andlocalized contours
or surfaces(models). The argument is that in the former case
available information is used compounded, while in the latter
case the information has been reduced to an average or modal
model.

Modality to model registrations are nearly alwayscurved.
Bajcsy (Bajcsyet al., 1983) performed elastic registration of
a CT feature space (sub-images containing average intensity
and edge information) to a model containing the brain and
ventricular edges. Cuisenaire (Cuisenaireet al., 1996) also
used the brain and ventricular edges, but obtained from MR
images. They were extracted from the MR by segmentation
using a morphological watershed and closing algorithm. The
model was obtained from a brain atlas obtained from a num-
ber of cryosectioned brains, and registration was performed
by local Chamfer matching. Rizzo (Rizzoet al., 1995)
registered the cortical surface, obtainedsemi-automatically
using edge detection, in anelasticfashion to a compartment
model. Registration was performed on a slice-by-slice basis,
after an initial manual axial correction.

10.1.18. Patient to modality registration
Without exception, the reported methods providerigid trans-
formations. This is not surprising, considering that it is
very hard to obtain more than surface information from the
patient. Paradoxically, there is often a clinical need for
curved transformation in the intra-operative occurrence of the
registration problem.

Many authors report on usingprobesin solving the patient
to modality registration problem. A probe is a device either
optically or magnetically tracked, or mounted on a robot arm,
so the spatial location of the probe tip is known accurately
at all times. Bucholz (Bucholzet al., 1994) used CT, MR
and PET images acquired withskin markers. After the
image acquisition, the marker locations are marked with ink.
During surgery, the patient wears a reference ring with LEDs
clamped to the patient, which position is tracked optically.
The ring is calibrated to the patient head position by probing
the skin marker locations, hence the pre-operative images are
calibrated to the patient. Edwards (Edwardset al., 1995b; Ed-
wardset al., 1995a) used the probe in one of three registration

approaches using a CT image. Eitheranatomical landmarks
or fiducialswhere identified in the image and on the patient
using the probe, or the skin surface wassegmentedfrom the
CT and indicated on the patient by probing many surface
points. The obtained spatial locations where subsequently
registered using point or surface registration methods. The
registration method using identifyingfiducials and probing
them during surgery is also used by Fuchs (Fuchset al., 1996)
who usedskin markersand a CT image, and Maurer (Maurer
et al., 1995b), who used an MR image andinvasive fiducials.
The method of registering asegmented surfacefrom the CT
image and a probed patient skin surface is also used by
Henderson (Hendersonet al., 1994) using a CT image, and
Ryan (Ryanet al., 1995) and Wang (Wanget al., 1994a) using
an MR image.

Approaches usingstereo videoimages of the patient where
proposed by Evans, Betting, and Henri. Evans (Evanset al.,
1996b) identifiedanatomical landmarkson a stereo video
image as well as in pre-operatively acquired CT or MR
images to obtain registration. Betting (Bettinget al., 1995)
and Henri (Henriet al., 1995) used the skin surface extracted
from the video image and a pre-operative image to find the
registration transformation. Betting used either CT or MR
images, Henri MR images. The registration methods use
either Chamfer matching or ICP.

The extraction of the surface from stereo video images is
not an easy task, and many authors use the skin surface as
obtained bylaser range scanningto obtain this surface, and
register it with the skin surfacesegmentedfrom pre-operative
images. Cuchet (Cuchetet al., 1995) used this method with
MR images, Grimson (Grimsonet al., 1994a; Grimsonet al.,
1994b; Grimsonet al., 1994c; Grimsonet al., 1995; Grimson
et al., 1996) used both CT or MR, and Harmon (Harmon
et al., 1994) and Vassal (Vassalet al., 1995) only CT. The
last author uses the method in a radiotherapy setting instead
of the surgical theater, and also describes a different method,
which is to perform the registration of patient to pre-treatment
3D CT by means of two X-ray or two portal images acquired
at a known angle during the treatment. From all of the images
involved contours are segmented. From the CT image,
DRRs (Digitally Reconstructed Radiographs) are created,
and registered to the real X-ray or portal projection images
using minimization of the contour distance. Similar methods
which use two acquired intra-treatment projection images
for registration to a pre-treatment CT image are described
by Vassal (Vassalet al., 1995), Gilhuijs (Gilhuijset al.,
1996), who uses bone ridges for contours, Gall (Gall and
Verhey, 1993), who does not use contours, butuser identified
invasive markers(tantalum screws), Leung Lam (Leung Lam
et al., 1993), who used implanted and surfacemarkers,
and Bainville (Bainvilleet al., 1995), who reconstructs a
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surface from the two radiographs. Lemieux (Lemieuxet al.,
1994a) uses a similar method, but in a surgical setting by
optimizing the cross-correlation between two intra-operative
X-ray images and two DRRs from pre-operative CT.

The only truly 2D/3D method (all the other ones are
intrinsically 3D/3D) was proposed by Betting (Betting and
Feldmar, 1995) who used the silhouette method described
in section 10.1.16 for registration of a single X-ray to pre-
operatively acquired CT or MR.

A number of the above described methods are reported on
by Hamadeh (Hamadehet al., 1995a), as used at a single site.

10.2. Registration of thoracic images
Registration of imaging of the thorax has three major appli-
cation areas:global, cardiacandbreast.

10.2.1. Registration of global thoracic images
Eberl (Eberlet al., 1996) performed3D rigid registration
of monomodalPET or SPECT images of the thorax by
minimization of the SAD. In radiotherapy, two2D appli-
cations are reported. Moseley (Moseley and Munro, 1994)
performedmonomodal affineportal image registration using
a two-pass approach: local translation-only registration is
performed in a number of user defined regions by optimizing
the cross-correlation. Then, the local shifts are combined
(by least squares fitting) into a globalaffine transformation.
Wang (Wang and Fallone, 1994) performedrigid registration
of a portal to an X-ray (simulator) image bymomentmatching
of the extracted radiation field edges. The edges were
extracted automatically by using a morphological gradient
and thresholding.

10.2.2. Registration of cardiac images
Cardiac image registration almost exclusively involves the
use of3D monomodal scintigraphic images; we located only
three exceptions. Tom (Tomet al., 1994) performed2D
curved automaticregistration on series of X-ray angiographic
images, by matching the skeletons of segmented arteries.
Savi (Saviet al., 1995) obtained3D rigid registration of US
and PET images by aligning threeuser defined anatomical
landmarks. Thirion (Thirion, 1995) performed3D curved
surface registration on CT images using demons on seg-
mented surfaces.

Thirion applies the same method to SPECT images. Other
curved methods are reported by Goris and Lin. The for-
mer (Goriset al., 1996) accomplishesautomatic 3D curved
SPECT-SPECT registration by using an ICP variation on
extracted Canny edges in a 3-step way: first globally rigid,
then affine, and finally locallycurved by using a spline
representation. The latter obtains a3D curvedtransformation
between two PET setsautomaticallyby avoxel basedmethod

on image subcubes. The actual paradigm used is not reported.
A 2D rigid method based ongeometrical landmarkswas

proposed by He (Heet al., 1991) for SPECT images. After
the user selects the mid-ventricular slice, the algorithm finds
the two local maxima along each horizontal image line,
and then locates the local minimum in between them. It
then least-squares fits a line trough the minima, and the
resultant models the left ventricular long axis. Registration
is performed by aligning the found axes from two images.

3D automatic voxel property/full image contentbased
methods are reported by Bacharach, Bettinardi, Eberl, Hoh,
Perault, and Slomka. All but Slomka’s method arerigid.
Bacharach (Bacharachet al., 1993) performed PET-PET
(emission) registration by optimizing the cross-correlation
of the accompanying transmission scansa. He assumes the
transmission and emission scans are internally registered.
This is not always the case, as the patient is moved from the
scanner bed after the transmission scan for tracer injection.
Bettinardi (Bettinardiet al., 1993) registers the PET transmis-
sion to the emission scan, by making asecondtransmission
directly following the emission scan. He assumes the emis-
sion and second transmission scan registered, and can there-
fore register the first transmission to the emission scan by
optimizing the cross correlation between the two transmission
scans. Cross-correlation is also used for registering different
PET (emission) scans by Perault (Peraultet al., 1995),i.c.,
rest and stress scans of one patient. Eberl (Eberlet al.,
1996) finds the optimal transformation between two SPECT
or PET images by optimizing the SAD. Hoh (Hohet al.,
1993) also uses the SAD on PET images only, and compares
the performance to optimizing the SSC. Finally, Slomka,
performsaffine atlasSPECT registration by minimization of
the SAD, after an initial estimate using alignment ofprincipal
axes. His atlas is created by averaging a large number of
normal SPECT scans registered in the same way.

Three authors report onsurface based methods. De-
clerc (Declercet al., 1996) performsaffine or curved au-
tomatic registration by a variation of ICP on two SPECT
images using a surface based on pruned edges detected in
a 3D polar map. Feldmar (Feldmar and Ayache, 1994;
Feldmaret al., 1996; Feldmar and Ayache, 1996) also used
an ICP variation on SPECT images. See section 10.1.2 for
a description. Pallotta (Pallottaet al., 1995) obtained a3D
rigid transformation between two (emission) PET scans by
Chamfer matching ofsurfacesobtained by thresholding the
accompanying transmission scans.

aMany PET scanners come equipped with the possibility of transmission
scanning prior to tracer injection and normal emission scanning. A radioac-
tive line source is employed for this, and the resulting transmission image has
a CT-like character and is used for a tissue attenuation map in the emission
image reconstruction.
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10.2.3. Registration of breast images
Consensus of registration of breast images seems to be that it
is archetypal to the non-rigid registration problems. Perhaps
the thus induced complexity is the reason that little attempt
has been made to solve the registration problem. This makes
Zuo’s recent publication (Zuoet al., 1996) all the more
surprising, since it claims that serially acquired MR images
(with and without a contrast agent) of a freely suspended
breast imaged using a breast coil, display onlyrigid motion, if
any at all. In this chapter,3D motion correction is performed
using thefull image contentemploying Woods’ (1993) min-
imization of variance of intensity ratios. The only other
publication found (Kumaret al., 1996) performedautomatic
3D curvedregistration on two MR images with and without
contrast agent by minimizing the sum of squared intensity
differences between the images. For a pre-registration, the
same procedure was first applied in anaffinemanner.

10.3. Registration of abdominal images
Registration of abdominal images appears only as applied to
renal or hepatic images in the literature.

Renal images:Venot (Venot and Leclerc, 1984) applied
2D automatic rigidregistration to DSA images of the kidney
by minimizing the DSC criterion. In the same application
of DSA images, Buzug (Buzug and Weese, 1996) found
a 2D automatic affinetransformation by combining local
translations found in image subcubes by minimizing the
entropy of the subtraction image. P´eria (Péria et al., 1995)
performednon-image based 3D automatic rigidregistration
of US and SPECT images by calibrating the US scanner to
the SPECT coordinate system, and acquiring the US image
while the patient is still on the SPECT gantry.

Hepatic images:Venot (Venotet al., 1983; Venotet al.,
1984) applied the same DSC strategy mentioned above to
SPECT images of the liver. Hoh (Hohet al., 1993) finds a3D
rigid automaticregistration in a similar way by minimizing
the SAD or SSC criterion. Scott3D rigidly registers CT or
MR images to SPECT images by using the head-hat method
onmanuallydrawn contours (Scottet al., 1994), or using CT
external contours and contours obtained from an abdominal
fiduciaryband in SPECT (Scottet al., 1995).

10.4. Registration of pelvic images
Except for Venot and Studholme, all of the encountered
papers appear in the context of radiotherapy. Venot (Venot
and Leclerc, 1984) performed2D rigid automaticregistration
of DSA images of the iliac arteries by means of optimizing
the DSC criterion. Studholme found a3D rigid automatic
transformations between MR and PET images by optimiza-
tion of the mutual information of the joint histogram.

The radiotherapy applications can be divided in2D appli-

cations, and3D patient to modalityregistration applications.
2D applications where proposed by Dong, Ding, Eilertsen,
Fritsch, Gilhuijs, and Wang. Dong registered portal images
in a 2D affine automatic fashionby optimization of the
cross-correlation. Ding (Dinget al., 1993) registered X-
ray to portal images by means ofuser identified landmarks.
Eilertsen (Eilertsenet al., 1994), in the same application, uses
alignment of the corners of the field edges, where the field
edges are extracted using a Radon transform. Fritsch (Fritsch,
1993; Fritschet al., 1994b; Fritschet al., 1994a) registers por-
tal imagesrigidly by minimizing the distance between their
cores,i.e., their multi-scale medial axes. Gilhuijs (Gilhuijs
and van Herk, 1993) finds a2D affine automatictransforma-
tion by Chamfer matching extracted edges from X-ray and
portal images. Finally, Wang (Wanget al., 1996b) does2D
translation-only registration of portal images based on phase-
only correlation in the Fourier domain.

3D patient to modalityregistration was done by Troc-
caz (Troccazet al., 1995), who achieved this bycalibrating
a US probe to the radiotherapy system, and registering pre-
treatment CT or MR to the US images by means ofuser
segmentedsurfaces. Four other approaches to3D patient to
modalitywere suggested, all of which involve the use of intra-
treatment acquired portal or X-ray images. Bijhold (Bijhold,
1993) performed the registration by employinguser defined
anatomical landmarksin a pre-treatment CT image and
the intra-treatment portal or X-ray images. Gall (Gall and
Verhey, 1993) used a similar technique withinvasive fiducial
markersand two X-ray images. Gilhuijs (Gilhuijset al.,
1996) found the transformationautomaticallyusing 2 X-ray
or portal images using the technique described in 10.1.18.
Vassal (Vassalet al., 1995) used a similar technique for
registration of pre-treatment CT or MR to the patient, using
two portal or X-ray images, or one of two other techniques,
namely acalibratedUS probe, orsurface basedregistration
using a patient surface obtained by acalibrated laser range
finder.

10.5. Registration of limb images
Registration of limb images is reported on almost exclusively
in the context of orthopedic interventions, notably at the
femur. Other application areas include the tibia, calcaneus
and humerus, but there are usually few restrictions to adapt
a certain registration method to another region. The trans-
formations found are allrigid, as they concern mainly the
displacement of bones. Hence, modalities always include
CT or X-ray images. Since the bone contrast is very high,
most methods, even those including segmentation tasks, can
be automated.

X-ray to CT registration was performed by Ellis and
Gottesfeld Brown. Ellis (Elliset al., 1996) finds a2D/3Dreg-
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istration between an (X-ray) r¨ontgenstereogrammetric anal-
ysis (RSAa) and a CT image, by usinginvasive fiducial
markersattached to the bone surface of the tibia. Gottes-
feld Brown (Gottesfeld Brown and Boult, 1996) finds an
automatic 2D/3Dtransformation by optimizing the cross-
correlation between the X-ray and a DRR from the CT of the
femur.

Monomodal 3D CT registration was done by Hem-
ler (Hemler et al., 1995b) using surface registration on
manually corrected, automatically segmented surfaces of
calcaneus. M¨unch (Münch and R¨uegsegger, 1993) performed
anautomaticregistration by optimizing the cross-correlation
of femural images. Jacq (Jacq and Roux, 1995) performed
curved automaticregistration on images of the humerus by
minimization of the local grey value differences.

Patient to CT modalityregistration was proposed by Lea,
and Simon. Lea (Leaet al., 1994) gives an overview of
current orthopedic methods, notably applied to the femur
and tibia. Simon (Simonet al., 1995b) comparesinvasive
fiducial andsurface basedmethods on femural images, and
presents anautomaticmethod on the same images using an
ICP variation sped up by using Kd-trees (Simonet al., 1995a;
Simonet al., 1994).

Two other applications are reported on: Ault (Ault and
Siegel, 1995; Ault and Siegel, 1994) registered US to CT
images in anautomatic fashion by means ofgeometrical
landmarks, corners detected in the US and a surface model
obtained from the CT. Finally, Amit (Amit and Kong,
1996) performed2D curved automatic modality to model
registration on X-ray images of the hand by graph matching it
to a model containing for nodes all anatomical flexion points.

10.6. Registration of spinal images
Except for van den Elsen, all of the reported algorithms are
surface based. She (van den Elsenet al., 1994) performs3D
rigid automaticregistration in afull image contentbased way
by optimizing the cross-correlation between a CT and MR
image, where the CT grey values are first remapped using
localized linear transforms.

Burel and Bainville assume that the two spinal surfaces
to be registered are given; no modality is named. The
former (Burelet al., 1995) performs3D rotation-only reg-
istration by decomposing each surface into its spherical
harmonics. Optimization is performed by using their special
geometrical invariances. Bainville (Bainvilleet al., 1995)
found a localcurved spline deformation using the local
closest point of the surfaces combined with a regularization
term.

Hemler (Hemleret al., 1994a; Hemleret al., 1994b; Hem-

aAlso known as stereophotogrammetry (SPG).

ler et al., 1995b) performs3D rigid registration of CT and
MR images by means of an automatically extracted, user cor-
rected surface. The surface is based on tracked Canny edges.
Hamadeh (Hamadehet al., 1995b) initially suggested the
use of fouruser identified anatomical landmarksfor 2D/3D
registration of X-ray to CT or MR images. This technique is
only used for a pre-registration in later work (Hamadehet al.,
1995c), wherepatient to modality(CT) is performed using a
calibrated X-ray in an intermediary step. In the pre-operative
CT, a surface is segmented in asemi-automatedway. From
the intra-operative X-ray image contours are extracted by
Canny-Deriche edge detection followed by hysteresis thresh-
olding. The contour is then registered to the surface using
Lavallée’s “bundle” method described in section 10.1.16.
Lavallée himself uses the very same method (Lavall´ee and
Szeliski, 1995; Lavall´ee, 1996), but usingtwo X-ray images,
as described in section 10.1.16. In earlier work (Lavall´ee
et al., 1994), pre-operative CT is registered to the patient by
registering probed points to a surface segmented from the CT.
In later work (Lavalléeet al., 1996b) the probed surface can
also be replaced by an US image. Szeliski (Szelisky and
Lavallée, 1994; Szeliski and Lavall´ee, 1994; Szeliski and
Lavallée, 1996), finally, performed3D curved registration
of CT images, given segmented surfaces, using local spline
deformations, where the surface distance computation is
simplified using a pre-computed octree distance map.

10.7. General papers
Papers that cannot or cannot easily be classified in specific
objectclasses, are cited in this section. Typically, such papers
contain overviews of methods, general applicable registration
approaches (see Maintz (Maintz, 1996)), or correspondences
regarding aspects of some method.

10.7.1. Overviews
Overviews of papers concerning medical image registra-
tion were presented by Maurer (Maurer and Fitzpatrick,
1993), van den Elsen (van den Elsenet al., 1993) and
Viergever (Viergeveret al., 1995). Overviews not primarily
literature oriented were given by Barillot (Barillotet al.,
1993; Barillotet al., 1995) and Hawkes (Hawkeset al., 1995).
Limited Overviews were presented by Collignon (Collignon
et al., 1993b) (surface based methods), Lavall´ee (Lavallée,
1996) (computer aided surgery (CAS) methods), Lea (Lea
et al., 1995a; Leaet al., 1995b) (CAS methods includ-
ing a graph classification), and McInerney (McInerney and
Terzopoulos, 1996) (deformable models used in medical
imaging).
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10.7.2. Correspondences regarding existing methods
Improvements to existing surface based methods are sug-
gested by Collignon (Collignonet al., 1993a). Feld-
mar (Feldmaret al., 1995) proposes an extension to ICP
to handle 2D/3D registration. Registration methods based
on point sets are addressed by Kanatani (Kanatani, 1994),
who proposes extensions to existing rotation only methods,
and Krattenthaler (Krattenthaleret al., 1994), who sug-
gests speed up techniques. Ways to speed up optimization
of mutual information based registration are suggested by
Pokrandt (Pokrandt, 1996).

11. RELATED ISSUES

11.1. How to use the registration
After a registration has been obtained, two questions appear
paramount:How accurate is the computed registration?and
How can it be used?The latter question presents us with an
entire area of research of its own: the answer may be quite
simple,e.g.,only some statistical property of the subtracted
registered images is required, to highly complex,e.g., a
hybrid transparent stereo rendering that needs to be projected
onto an operating microscope ocular is asked for. Such
complex uses invariably require non-trivial visualizations in
which segmentation must figure. This creates a paradox:
on the one hand, many registration applications show how
intertwined the problems of registration and segmentation can
be, and hence the designer of the registration algorithm is
tempted to draw on his own expertise in answering the ques-
tion on how the registration is to be used; indeed, this question
must have figured in the registration algorithm design, which
should have started out with a clinical need for registration.
On the other hand, once a registration is obtained, the problem
of How to use it? poses interdisciplinary problems of a
previously unencountered nature. Be that as it may, fact
is that few registration papers attempt to follow up on the
use of the registration, and likewise few papers in a vast
plethora of visualization papers employ registered images for
inputa. The cause for this may be found in the fact that
visualization solutions are often highly specific and problem
dedicated, and in the interdisciplinary nature of the problem.
In other words: the areas of registration and visualization
are still widely apart; not many registrations use state-of-the-
art visualization, nor do many visualizations use registered
input. Such solitary stances can be observed concerning
other research areas too: registration and segmentation have

aMostly the area of segmentation-free imagefusionaddresses this problem,
but its applications to medical image problems are severely limited (Burt,
1993; Chouet al., 1995; Li et al., 1994a; Liet al., 1995; Pietrzyket al.,
1996; Wassermanet al., 1994; Wasserman and Acharya, 1995; Wahlet al.,
1993; Zhou, 1994).

many a common interest, yet are seldom integrated. Also,
registration is rarely used in many clinical applications, even
though such applications may benefit from registered images;
in many cases the potential of image registration is still an
unknown. This can be accredited to the fact that registration
research is relatively young area where many applications
are concerned, to the fact that registration often involves new
visualizations that possibly come with a steep interpretation
learning-curve, to the fact that registration accuracy is often
very hard to quantify sufficiently, to the logistic problems
involved in integrating digital (or even analog) data from
different machines often departments apart, to the extra
equipment and time needed, and to the interdisciplinary gap.
The point of this long-winded periphrastic soliloquy is that
the questionhow can the registration be usedis for the most
part still unanswered: even though the need for registration
is born out of a clinical need, the trackafter obtaining the
transformation parameters is still largely blank.

11.2. Validation
The other question concerning a computed registration entails
the accuracy. The answer is non-trivial for the simple reason
that a gold standard is lacking regarding clinical practice. We
can usually only supply a measure of accuracy by reference to
controlled phantom studies, simulations, or other registration
methods. Such measures are often lacking as concerns clin-
ical needs: not only does a thus obtained reference accuracy
require the need for an accuracyvariability measure –since
the accuracy cannot be made local in a clinical example, and
therefore needs to be supplied with reliability bounds–, but
neither do such measures easily transfer to particular clinical
cases,e.g.,instances of abnormally distortive pathology.

There is a widespread quest for measures that somehow
quantify registration accuracy. In our opinion, such a task is
paradoxical, because of the simple fact that if such measures
existed, they would be used for registration paradigmsb

Which brings us to a positivistic statement on accuracy:We
cannot, with absolute certainty, quantify local registration
errors. However, given that we can transfer error measures
obtained by reference, we can eventually say that it isunlikely
for the error to exceed a certain bound.

For many applications, the phase where sufficiently small
errors can be ascertained has not yet been reached. In
many instances, proper accuracy studies are just starting.
What is particularly hampering to giving any statistics on
certain methods is not only the incomparability of accu-
racy experiments done on particular sites–images are often

bAs with many bold statements, this one is not entirely true, in the sense
that we cannot simply use any paradigm,e.g., since we are restricted in
terms of computation time and convergence properties of the criterion used.
Nevertheless, the gist of the statement holds.
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proprietary, implementation and circumstances site specific,
circumstances are differentetc.– but also the imprecise use
of the termsaccuracy, precision, and robustnessin many
studies. The notion that public databases of representative
images are to be created, and validation protocols need to
be assembled, is only now emerging. The involved logistics,
cost, and effort, however, make prospects Utopian for many
registration applications.

11.2.1. Validation definitions
Validation of a registration embodies more than the accuracy
verification. The list of items includes:

� Precision
� Accuracy
� Robustness/stability
� Reliability
� Resource requirements
� Algorithm complexity
� Assumption verification
� Clinical use

Except for the first two items (treated in the next paragraph),
where the distinction is at times vague, unique definitions
can be supplied.Robustnessor stability refers to the basic
requirement that small variations in the input should result
in small variations in the output,i.e., if input images are
aligned in a slightly varied orientation, the algorithm should
converge to approximately the same result.Reliability is the
requirement that the algorithm should behave as expected,
given a reasonable range of possible clinical input.Resource
requirementsconcern the material and effort involved in the
registration process. These should be reasonable relative
to the clinical merit obtained from the registration. The
algorithm complexityand related computation time should be
adapted to the time and resource constraints of the clinical
environment. Time can be a constraint in a two fold manner;
either a single registration needs to be performed on-line be-
cause of direct clinical requirements, or multiple registrations
appear in clinicalroutine, and need to be performed in a
reasonable time frame so as not to cause lag in the clinical
track. Theassumptionson reality made in the paradigm
and optimization modeling should be verified to hold up
sufficiently in practice. Finally, theclinical useshould be
verified: does the registration provide in a clinical need,
and does its use outweigh available alternatives? In ideal
circumstances, all of the criteria should be satisfied. However,
it is unrealistic to assume that all criteria can be met within
one application; the weight attached to each criterion is
application dependent, and a matter of judgment.

We have not yet definedprecision or accuracy. For
the problem at hand, we stray somewhat from conventional

definitions. We defineprecision as the typical systematic
error that can be obtained when the registration algorithm
is supplied with idealized input. For example, a simple one
dimensional shift optimization algorithm that does exhaustive
searching with a resolution of two pixels, is expected to per-
form with a precision of within two pixels when given ideal
input, e.g., two identical images. In a more complex vein,
a local error measurement obtained at an invasive fiducial
marker used in the registration process can be regarded as
a precision measure. Precision measures can be obtained
concerning the entire registration system, or applying to
specific components, like the patient (movement, artifacts),
the acquisition, the paradigm, and the optimization, although
we are tempted to remove the patient from the list, as
modeling and quantizations are hard here.Accuracyis a more
direct measure, referring to the actual, “true” error occuring
at a specific image location. Where precision is a system
property, accuracy applies to specific registration instances.
Accuracy will be the property that immediately concerns the
clinician: for example, the surgeon can point at the screen
and say “I must make an incisionhere. How accurate can
this location be determined in the patient?”. Accuracy can
be divided intoqualitative and quantitativeaccuracy. The
former can usually be supplied using simple visualization
tools and visual inspection,e.g., when registering CT and
MR brain images, overlaying the segmented bone contours
onto MR slices supplies the clinician with a reasonable idea
of accuracy. Quantitativeaccuracy, as pointed out before,
needs a ground truth that is unavailable in clinical practice,
and therefore needs to be emulated by reference to another
measure.

Typically, evaluations of a registration method as concerns
accuracy and precision (and other criteria) may occur at
a number of levels:synthetic, phantom, pre-clinical, and
clinical. Thesyntheticlevel is entirely software-based. The
images used at this level can be controlled in every aspect.
If images aresimulatedemulating the clinical acquisition,
we speak of asoftware phantom. The merits of software
phantoms include the availability of ground truth, and the
fact that realistic image degrading factors can be controlled.
The (physical)phantomlevel makes use of true image ac-
quisitions, usually imaging anthropomorphic models. At
this stage, ground truth is no longer available, but it can be
approximated with high accuracy by introducing markers into
the phantom, by using multiple acquisitions, and the fact that
phantom movements can be controlled. Thepre-clinical level
involves using real patient (or volunteer) or cadaver data.
Ground truth can again only be approximated at this level,
although frequently accurately so by reference to a registra-
tion based on an established registration method. Cadaver
studies offer good opportunities here, as patient movement
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is absent or fully controlled, and patient friendliness can be
disregarded in obtaining the registration standard. Studies
using real patient data should optimally employ images drawn
from a database containing generic as well as acquisitionally
and pathologically exceptional data. Finally, at theclinical
level the registration method is used in the clinical routine,
at the intended application level. At this stage, a reference
registration may or may not be available, and validation
should primarily be turned over to the clinicians involved.

11.2.2. Validation: a survey
As mentioned before, validation studies are only now emerg-
ing. Many papers address some precision or accuracy
validation at some level, but few extensively so, and even
then is precision often restricted to the algorithmic level.
Given the effort and time that needs to be expended in a
complete validation study, this is not surprising, nor would it
be a realistic expectation from authors presenting some new
registration paradigm.

Those instances of validation we found are cited in this
paragraph. We do not include robustness studies, nor preci-
sion studies not exceeding the algorithm level,i.e., authors
adding known transformations to input images to see if they
can be recovered by the algorithm. Validation studies are
frequently part of a paper presenting a new registration ap-
proach, but some papers are dedicateda entirely to validation.

Method validation by reference to external marker based
methods can be found in (Ardekaniet al., 1995; Ayache
et al., 1993; van den Elsen and Viergever, 1993; van den
Elsen et al., 1994; van den Elsenet al., 1995; Geet al.,
1996; Leslieet al., 1995; Maeset al., 1996; Maureret al.,
1995b; Maureret al., 1993; Maureret al., 1994; Maurer
et al., 1995a; Maintzet al., 1994; Maintzet al., 1996a; Simon
et al., 1995b; Turkingtonet al., 1995; West et al., 1996;
Zubalet al., 1991). Validation by comparison to registration
based on probed points is found in (Evanset al., 1996b;
Ellis et al., 1996), by comparison to manually identified
anatomical landmark based registration in (Anderssonet al.,
1995; Collinset al., 1994a; Collinset al., 1994b; Evanset al.,
1989; Geeet al., 1993; Geeet al., 1995b; Hill et al., 1993a;
Leslie et al., 1995; Moseley and Munro, 1994; Studholme
et al., 1995b; Studholmeet al., 1995a; Strotheret al., 1994),
and by comparison to frame based registration in (Collignon
et al., 1995a; Collignonet al., 1995b; Geet al., 1994; Henri
et al., 1992; Lemieuxet al., 1994b; Lemieux and Jagoe,
1994; Strotheret al., 1994; Woodset al., 1993). Cross-
method validation (reference to other intrinsic methods than

aSee,e.g.,(Holton et al., 1995; Holtonet al., 1995; Lemieuxet al., 1994b;
Lemieux and Jagoe, 1994; Maureret al., 1993; Maureret al., 1994; Neelin
et al., 1993; Strotheret al., 1994; Turkingtonet al., 1993; Tanejaet al., 1994;
Vassalet al., 1995)

the one principally used) is reported in (Andersson, 1995;
Collignon et al., 1995a; Eberlet al., 1996; Hua and Fram,
1993; Hohet al., 1993; Lehmannet al., 1996; Leszczynski
et al., 1995; Maureret al., 1995a; Maintzet al., 1996c;
Maintzet al., 1995; Maintzet al., 1996b; Simonet al., 1995b;
Studholmeet al., 1995b; Studholmeet al., 1995a; Strother
et al., 1994; West et al., 1996). Most popular validation tech-
niques employ a physical phantom, possibly with controlled
movement, and possibly with marking devices inserted or
attached. Examples are found in (Bijhold, 1993; Betting
and Feldmar, 1995; Bettinardiet al., 1993; Chenet al.,
1987; Dong and Boyer, 1996; Dinget al., 1993; Eberlet al.,
1996; Grimsonet al., 1994a; Grimsonet al., 1994b; Grimson
et al., 1994c; Grimsonet al., 1995; Grimsonet al., 1996;
Gottesfeld Brown and Boult, 1996; Gluhchev and Shalev,
1993; Gall and Verhey, 1993; Holtonet al., 1995; Holton-
Tainteret al., 1995; Lemieuxet al., 1994a; Lavall´eeet al.,
1994; Lavallée and Szeliski, 1995; Lavall´ee et al., 1996b;
Lavallée et al., 1996a; Leung Lamet al., 1993; Maurer
et al., 1993; McParland and Kumaradas, 1995; Moseley and
Munro, 1994; P´eria et al., 1994; Pallottaet al., 1995; Petti
et al., 1994; Turkingtonet al., 1993; Tanejaet al., 1994;
Vassalet al., 1995). Simulator studies,i.e., studies were one
modality is simulated from the other to obtain a registration
standard, is found in (Cuchetet al., 1995; Evanset al., 1996a;
Fritsch, 1993; Fritschet al., 1994b; Fritschet al., 1994a;
Neelin et al., 1993). Intra- and/or interobserver studies are
performed in (Hillet al., 1991a; Malisonet al., 1993; Pietrzyk
et al., 1994; Stapletonet al., 1995). Finally, Hemler (Hemler
et al., 1994a; Hemleret al., 1995c; Hemleret al., 1995a;
Hemleret al., 1996) performed cadaver studies using inserted
markers for reference.

12. DISCUSSION

What trends can be observed from the current literature?
There is a definite shift in research from extrinsic to intrinsic
methods, although clinically used methods are often still
extrinsic. Of the intrinsic methods, the surface based methods
appear most frequently, closely followed by “full image
content” voxel property based methods. Instances of the
latter type are slowly setting the standard for registration
accuracy, a place formerly reserved for frame and invasive
fiducial based registrations. The application of full image
content voxel property based methods is however still largely
limited in the extensive application field of intra-operative
registration and radiotherapy treatment related registration
(both requiring patient to modality registration). Especially in
the area of intra-operative registration, surface based methods
are dominant, and voxel based methods almost absent. The
reasons may be clear: it is relatively easy to obtain a surface
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from the patient, either using laser scanning, probes, 2D
imagery, etc, while obtaining reliable image information
for voxel property based methods is more difficult: intra-
operative imaging may not even be part of the normal surgical
routine. If it is, images are usually 2D, and if 3D, of a
relative poor quality given common equipment and acquisi-
tion sequence constraints in the operating theater. Moreover,
surface based methods are, on the average, still faster than
voxel property based methods. However, a problem with
surface based methods is that they cannot cope with shift
of relevant anatomy relative to the surface used in the reg-
istration, which may be severely restraining to intra-operative
application. This problem may be solved using voxel based
methods, but given the current state of affairs considering
registration methods, surgical protocol, and intra-operative
imaging, this will not be done in the very near future. In
the case of radiotherapy treatment related registration (patient
positioning, and patient position verification), the future will
certainly include more of voxel based methods: imaging (X-
ray simulator images and portal images) is already part of
the common clinical treatment routine; radiotherapy relies
almost exclusively on imaging for (tumor) localization, un-
like surgery, where the visual impression is still the most
important cue. It is not unlikely that this will change soon
for a number of surgical applications, given the current trend
of less and less invasive surgery that requires making use of
advanced imaging techniques.

Many (but not all)monomodalregistration problems ap-
pear to have been solved satisfactorily. We can accredit this to
the fact that a registration paradigm can usually be relatively
simple in the monomodal problem. Furthermore, given a
computed transformation, many applications do not require
complex visualization techniques, but can be adequately han-
dled using subtraction techniques.Multimodal applications
cannot be discussed in general terms, the applications are
simply too diverse. It is tempting, but incorrect, to say
registration results are somewhat more satisfying in methods
involving scintigraphic imaging, perhaps because the rela-
tively blurry nature of the images allows for a slightly larger
displacement. In,e.g.,CT to MR registration, a displacement
of a pixel can sometimes be obvious to the naked eye, and
to obtain an accuracy in this order of magnitude, we cannot
avoid to investigate precision at the acquisition level, (e.g.,the
distortions induced by field inhomogeneity in MR images),
which are of the same order of magnitudea However, the
resolution of the images should not be used to formulate a
clinically relevant level of accuracy: it is very well possible
that a SPECT to MR registration requires a higher accuracy

aDistortion correcting algorithms have been proposed and are now available
to a certain extent; scanners are calibrated better, and magnetic fields are
adapted for minimum distortion.

than some instance of CT to MR registration, even though
it is likely that the smaller error is more easily assessed by
the naked eye in the latter case. The actual level of accuracy
needed is in many applications still an unknown, and cannot
accurately be quantified, even by the clinicians involved.

Intra-operative registration and methods on patient po-
sitioning in radiotherapy are in clinical use with apparent
good results at a number of sites. On thediagnosticuse of
registration (modality to modality), much less information
can be found. We suspect that, bearing in mind the possible
clinical potential of diagnostic registration, it is actually used
very little. The reasons for this are, probably, in essence of
a logistic nature: unlike in the intra-operative scene (where
all imaging and operations take place in the same room),
in many multimodal diagnostic settings images are acquired
at different places, –often even at different departments– by
different people, at different times, often transfered to dif-
ferent media, and frequently evaluated by different specialist
diagnosticians. Besides these logistic reasons, it is also
often unclear how a registration can optimally be used in the
diagnostic process. It has already been pointed out that much
research can still be done in this area.

Many methods can still be considered barred from mean-
ingful clinical application by the fact that they are as yet
improperly validated. Although the proper verification meth-
ods are known in most cases, and coarsely laid out in the
previous section, for most applications the painstaking work
of conducting the many experiments involved is only now
starting.
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Guéziec, A. and Ayache, N. (1992). Smoothing and matching of 3-D
space curves. In Robb, R.A. (ed.),Visualization in biomedical
computing, Vol. 1808 ofProc. SPIE, pp. 259–273. SPIE Press,
Bellingham, WA.

Hajnal, J. V., Saeed, N., Oatridge, A., Williams, E. J., Young, I. R.,
and Bydder, G. M. (1995a). Detection of subtle brain changes
using subvoxel registration and subtraction of serial MR images.
Journal of computer assisted tomography, 19(5), 677–691.

Hajnal, J. V., Saeed, N., Soar, E. J., Oatridge, A., Young, I. R., and
Bydder, G. M. (1995b). A registration and interpolation pro-
cedure for subvoxel matching of serially acquired MR images.
Journal of computer assisted tomography, 19(2), 289–296.

Haller, J. W., Christensen, G. E., Joshi, S., Miller, M. I., and
Vannier, M. W. (1995). Digital atlas-based segmentation of the
hippocampus. In Lemke, H. U., Inamura, K., Jaffe, C. C., and
Vannier, M. W. (eds),Computer assisted radiology, pp. 152–
157, Berlin. Springer-Verlag.

Haller, J. W., Christensen, G. E., Joshi, S. C., Newcomer, J. W.,
Miller, M. I., Csernansky, J. G., and Vannier, M. W. (1996).
Hippocampal MR imaging morphometry by means of general
pattern matching.Radiology, 199, 787–791.

Hamadeh, A., Lavall´ee, S., Szeliski, R., Cinquin, P., and P´eria, O.
(1995a). Anatomy-based registration for computer-integrated
surgery. In Ayache, N. (ed.),Computer vision, virtual reality,
and robotics in medicine, Vol. 905 ofLecture notes in computer
science, pp. 212–218, Berlin. Springer-Verlag.

Hamadeh, A., Sautot, P., and Cinquin, P. (1995b). A unified
approach to 3D-2D registration and 2D images segmentation. In
Lemke, H. U., Inamura, K., Jaffe, C. C., and Vannier, M. W.
(eds), Computer assisted radiology, pp. 1191–1196, Berlin.
Springer-Verlag.

Hamadeh, A., Sautot, P., Lavall´ee, S., and Cinquin, P. (1995c).
Towards automatic registration between CT and X-ray images:
cooperation between 3D/2D registration and 2D edge detection.
In Medical robotics and computer assisted surgery, pp. 39–46.
Wiley.

Harmon, L., Vayda, A., Erlandson, E., Taren, J., and Ross, D.
(1994). 3D laser scanning for image-guided neurosurgery. In
Applications of computer vision in medical image processing,
AAAI spring symposium series, pp. 106–109.

Hata, N., Suzuki, M., Dohi, T., Iseki, H., Takakura, K., and
Hashimoto, D. (1994). Registration of ultrasound echography
for intraoperative use: a newly developed multiproperty method.
In Robb, R. A. (ed.),Visualization in biomedical computing, Vol.
2359, pp. 251–259, Bellingham, WA. SPIE Press.

Hawkes, D. J., Hill, D. L. G., and Bracey, E. C. M. L. (1992). Multi-
modal data fusion to combine anatomical and physiological
information in the head and heart. In Reiber, J. H. C. and van der

Wall, E. E. (eds),Cardiovascular nuclear medicine and MRI, pp.
113–130, Dordrecht, the Netherlands. Kluwer.

Hawkes, D. J., Ruff, C. F., Hill, D. L. G., Studholme, C., Edwards,
P. J., and Wong, W. L. (1995). 3D multimodal imaging in image
guided interventions. In Beolchi, L. and Kuhn, M. H. (eds),
Medical imaging: analysis of multimodality 2D/3D images,
Vol. 19 of Studies in health, technology and informatics, pp. 83–
100. IOS Press, Amsterdam.

He, Z., Maublant, J. C., Cauvin, J. C., and Veyre, A. (1991).
Reorientation of the left ventricular long-axis on myocardial
transaxial tomograms by a linear fitting method.Journal of
nuclear medicine, 32, 1794–1800.

Hemler, P. F., Napel, S., Sumanaweera, T. S., Pichumani, R.,
van den Elsen, P. A., Martin, D., Drace, J., and Adler, J. R.
(1995a). Registration error quantification of a surface-based
multimodality image fusion system.Medical physics, 22(7),
1049–1056.

Hemler, P. F., Sumanaweera, T., Pichumani, R., van den Elsen, P. A.,
Napel, S., and Adler, J. (1994a). A system for multimodality
image fusion. InIEEE symposium on computer-based medical
systems, pp. 335–340, Los Alamitos, CA. IEEE Computer
Society Press.

Hemler, P. F., Sumanaweera, T., Pichumani, R., van den Elsen,
P. A., Napel, S., Drace, J., and Adler, J. (1994b). A system
for multimodality image fusion of the spine. InApplications
of computer vision in medical image processing, AAAI spring
symposium series, pp. 42–45.

Hemler, P. F., Sumanaweera, T., van den Elsen, P. A., Napel, S.,
and Adler, J. R. (1996). Quantified registration error versus
the accuracy of registered surfaces for a multimodality surface-
based registration system. In Loew, M. H. and Hanson, K. M.
(eds),Medical Imaging: Image processing, Vol. 2710, pp. 348–
357, Bellingham, WA. SPIE.

Hemler, P. F., Sumanaweera, T. S., van den Elsen, P. A., Napel,
S., and Adler, J. (1995b). A versatile system for multimodality
image fusion.Journal of image guided surgery, 1(1).

Hemler, P. F., van den Elsen, P. A., Sumanaweera, T. S., Napel, S.,
Drace, J., and Adler, J. R. (1995c). A quantitative comparison
of residual error for three different multimodality registration
techniques. In Bizais, Y., Barillot, C., and di Paola, R.
(eds),Information processing in medical imaging, pp. 389–390.
Kluwer.

Henderson, J. M., Smith, K. R., and Bucholz, R. D. (1994). An
accurate and ergonomic method of registration for image-guided
neurosurgery. Computerized medical imaging and graphics,
18(4), 273–277.

Henri, C. J., Colchester, A. C. F., Zhao, J., Hawkes, D. J., Hill,
D. L. G., and Evans, R. L. (1995). Registration of 3-D surface
data for intra-operative guidance and visualization in frameless
stereotactic neurosurgery. In Ayache, N. (ed.),Computer vision,
virtual reality, and robotics in medicine, Vol. 905 of Lecture
notes in computer science, pp. 47–56, Berlin. Springer-Verlag.

Henri, C. J., Cukiert, A., Collins, D. L., Olivier, A., and Peters, T. M.
(1992). Towards frameless stereotaxy: anatomical-vascular
correlation and registration. InVisualization in biomedical



A Survey of Medical Image Registration 31

computing, Vol. 1808, pp. 214–224, Bellingham, WA. SPIE
press.

Hill, D. L. G. (1993). Combination of 3D medical images from
multiple modalities. Ph.D. Thesis, University of London.

Hill, D. L. G. and Hawkes, D. J. (1994). Medical image registration
using voxel similarity measures. InApplications of computer
vision in medical image processing, AAAI spring symposium
series, pp. 34–37.

Hill, D. L. G., Hawkes, D. J., Crossman, J. E., Gleeson, M. J.,
Cox, T. C. S., Bracey, E. C. M. L., Strong, A. J., and Graves,
P. (1991a). Registration of MR and CT images for skull base
surgery using pointlike anatomical features.British journal of
radiology, 64(767), 1030–1035.

Hill, D. L. G., Hawkes, D. J., and Hardingham, C. R. (1991b).
The use of anatomical knowledge to register 3D blood vessel
data derived from DSA with MR images. InMedical imaging:
image processing, Vol. 1445, pp. 348–357, Bellingham, WA.
SPIE press.

Hill, D. L. G., Hawkes, D. J., Harrison, N. A., and Ruff, C. F.
(1993a). A strategy for automated multimodality image regis-
tration incorporating anatomical knowledge and imager charac-
teristics. In Barrett, H. H. and Gmitro, A. F. (eds),Information
processing in medical imaging, Vol. 687 of Lecture notes in
computer science, pp. 182–196, Berlin. Springer-Verlag.

Hill, D. L. G., Hawkes, D. J., Hussain, Z., Green, S. E. M., Ruff,
C. F., and Robinson, G. P. (1993b). Accurate combination of
CT and MR data of the head: validation and applications in
surgical and therapy planning.Computerized medical imaging
and graphics, 17(4/5), 357–363.

Hill, D. L. G., Studholme, C., and Hawkes, D. J. (1994). Voxel
similarity measures for automated image registration. In Robb,
R.A. (ed.),Visualization in biomedical computing, Vol. 2359,
pp. 205–216. SPIE Press, Bellingham, WA.

Hoh, C. K., Dahlbom, M., Harris, G., Choi, Y., Hawkins, R. A.,
Phelps, M. E., and Maddahi, J. (1993). Automated iterative
three-dimensional registration of positron emission tomography
images.Journal of nuclear medicine, 34, 2009–2018.

Holton, K. S., Taneja, U., and Robb, R. A. (1995). Quantitative
validation of 3D image registration techniques. In Loew, M. H.
(ed.),Medical imaging: image processing, Vol. 2434, pp. 504–
519, Bellingham, WA. SPIE Press.

Holton-Tainter, K., Zhao, J., and Colchester, A. C. F. (1995).
Accuracy of the VISLAN intra-operative pointer in localising
markers from pre-operative images. InMedical robotics and
computer assisted surgery, pp. 278–285. Wiley.

Hristov, D. H. and Fallone, B. G. (1996). A grey-level alignment
algorithm for registration of portal images and digitally recon-
structed radiographs.Medical physics, 23(1), 75–84.

Hua, P. and Fram, I. (1993). Feature-based image registration for
digital subtraction angiography. In Loew, M. H. (ed.),Medical
imaging: image processing, Vol. 1898, pp. 24–31, Bellingham,
WA. SPIE Press.

Huang, Z. and Cohen, F. S. (1994). Affine-invariant B-spline
moments for curve matching. InComputer vision and pattern

recognition, pp. 587–592, Los Alamitos, CA. IEEE Computer
Society press.

Jacq, J. and Roux, C. (1995). Registration of non-segmented images
using a genetic algorithm. In Ayache, N. (ed.),Computer vision,
virtual reality, and robotics in medicine, Vol. 905 of Lecture
notes in computer science, pp. 205–211, Berlin. Springer-
Verlag.

Jain, A. K., Zhong, Y., and Lakshmanan, S. (1996). Object matching
using deformable templates.IEEE Transactions on pattern
analysis and machine intelligence, 18(3), 267–277.

Jiang, H., Holton, K., and Robb, R. (1992a). Image registration of
multimodality 3-D medical images by chamfer matching. Tech-
nical report, Dept of Physiology and Biophysics, Biomedical
Imaging Resource, Mayo Foundation, Rochester, MN 55905.

Jiang, H., Robb, R. A., and Holton, K. S. (1992b). A new approach
to 3-D registration of multimodality medical images by surface
matching. InVisualization in biomedical computing, Vol. 1808,
pp. 196–213, Bellingham, WA. SPIE press.

Junck, L., Moen, J. G., Hutchins, G. D., Brown, M. B., and Kuhl,
D. E. (1990). Correlation methods for the centering, rotation,
and alignment of functional brain images.Journal of nuclear
medicine, 31, 1220–1276.

Kanatani, K. (1994). Analysis of 3-D rotation fitting.IEEE Transac-
tions on pattern analysis and machine intelligence, 16(5), 543–
549.

Kittler, J., Christmas, W. J., and Petrou, M. (1993). Probabilistic
relaxation for matching problems in computer vision. InIn-
ternational conference on computer vision, pp. 666–673, Los
Alamitos, CA. IEEE computer society press.

Kooy, H. M., van Herk, M., Barnes, P. D., Alexander III, E.,
Dunbar, S. F., Tarbell, N. J., Mulkern, R. V., Holupka, E. J., and
Loeffler, J. S. (1994). Image fusion for stereotactic radiotherapy
and radiosurgery treatment planning.International journal of
radiation oncology, 28(5), 1229–1234.

Krattenthaler, W., Mayer, K. J., and Zeiler, M. (1994). Point
correlation: a reduced-cost template matching technique. In
International conference on image processing, pp. 208–212, Los
Alamitos, CA. IEEE computer society press.

Kruggel, F. and Bartenstein, P. (1995). Automatical registration of
brain volume datasets. In Bizais, Y., Barillot, C., and di Paola, R.
(eds),Information processing in medical imaging, pp. 389–390.
Kluwer.

Kumar, R., Asmuth, J. C., Hanna, K., and Bergen, J. (1996).
Application of 3D registration for detecing lesions in magnetic
resonance scans. In Loew, M. H. and Hanson, K. M. (eds),
Medical Imaging: Image processing, Vol. 2710, pp. 646–656,
Bellingham, WA. SPIE.

Laitinen, L. V., Liliequist, B., Fagerlund, M., and Eriksson, A. T.
(1985). An adapter for computer tomography guided stereotaxis.
Surgical neurology, 23, 559–566.

Lange, N., O’Tuama, L. A., and Treves, S. T. (1993). Statistical
methods for paired comparisons of SPECT brain images. In
Wilson, D. C. and Wilson, J. N. (eds),Mathematical methods
in medical imaging, Vol. 2035, pp. 171–178, Bellingham, WA.
SPIE Press.



32 J.B.A. Maintzet al.

Lavallée, S. (1996). Registration for computer-integrated surgery:
methodology, state of the art. In Taylor, R. H., Lavall´ee,
S., Burdea, G. C., and M¨osges, R. (eds),Computer-integrated
surgery, Technology and clinical applications, chapter 5, pp. 77–
97. MIT Press, Cambridge, MA.

Lavallée, S., Sautot, P., Troccaz, J., Cinquin, P., and Merloz, P.
(1994). Computer assisted spine surgery: a technique for
accurate transpedicular screw fixation using CT data and a 3-
D optical localizer. InMedical robotics and computer assisted
surgery, pp. 315–322.

Lavallée, S. and Szeliski, R. (1995). Recovering the position and
orientation of free-form objects.IEEE Transactions on pattern
analysis and machine intelligence, 17(4), 378–390.

Lavallée, S., Szeliski, R., and Brunie, L. (1996a). Anatomy-based
registration of three-dimensional medical images, range images,
X-ray projections, and three-dimensional models using octree-
splines. In Taylor, R. H., Lavall´ee, S., Burdea, G. C., and
Mösges, R. (eds),Computer-integrated surgery, Technology
and clinical applications, chapter 7, pp. 115–143. MIT Press,
Cambridge, MA.

Lavallée, S., Troccaz, J., Sautot, P., Mazier, B., Cinquin, P., Merloz,
P., and Chirossel, J. (1996b). Computer-assisted spinal surgery
using anatomy-based registration. In Taylor, R. H., Lavall´ee,
S., Burdea, G. C., and M¨osges, R. (eds),Computer-integrated
surgery, Technology and clinical applications, chapter 32, pp.
425–449. MIT Press, Cambridge, MA.

Lea, J. T., Santos-munn´e, J. J., and Peshkin, M. A. (1995a).
Diagramming registration connectivity and structure.IEEE
Engineering in medicine and biology, 14(3), 271–278.

Lea, J. T., Watkins, D., Mills, A., Peshkin, M. A., Kienzle III, T. C.,
and Stulberg, S. D. (1994). Registration and immobilization
for robot-assisted orthopaedic surgery. InMedical robotics and
computer assisted surgery, pp. 63–68.

Lea, J. T., Watkins, D., Mills, A., Peshkin, M. A., Kienzle III, T. C.,
and Stulberg, S. D. (1995b). Registration and immobilization
in robot-assisted surgery.Journal of image guided surgery, 1,
80–87.

Leclerc, V. and Benchimol, C. (1987). Automatic elastic registration
of DSA images. InComputer assisted radiology, pp. 719–723.

Lehmann, T., Goerke, C., Schmitt, W., Kaupp, A., and Repges,
R. (1996). A rotation-extended cepstrum technique optimized
by systematic analysis of various sets of X-ray images. In
Loew, M. H. and Hanson, K. M. (eds),Medical Imaging: Image
processing, Vol. 2710, pp. 390–401, Bellingham, WA. SPIE.

Lemieux, L. and Jagoe, R. (1994). Effect of fiducial marker
localization on stereotactic target coordinate calculation in CT
slices and radiographs.Physics in medicine and biology, 39,
1915–1928.

Lemieux, L., Jagoe, R., Fish, D. R., Kitchen, N. D., and Thomas, D.
G. T. (1994a). A patient-to-computed-tomography image reg-
istration method based on digitally reconstructed radiographs.
Medical physics, 21(11), 1749–1760.

Lemieux, L., Kitchen, N. D., Hughes, S. W., and Thomas, D. G. T.
(1994b). Voxel-based localization in frame-based and frameless
stereotaxy and its accuracy.Medical physics, 21(8), 1301–1310.

Leslie, W. D., Borys, A., McDonald, D., Dupont, J. O., and Peterdy,
A. E. (1995). External reference markers for the correction
of head rotation in brain single-photon emission tomography.
European journal of nuclear medicine, 22(4), 351–355.

Leszczynski, K., Loose, S., and Dunscombe, P. (1995). Segmented
chamfer matching for the registration of field borders in radio-
therapy images.Physics in medicine and biology, 40, 83–94.

Leung Lam, K., ten Haken, R. K., McShan, D. L., and Thornton,
A. F. (1993). Automated determination of patient setup errors in
radiation therapy using spherical radio-opaque markers.Medical
physics, 20(4), 1145–1152.

Levin, D. N., Pelizzari, C. A., Chen, G. T. Y., Chen, C.T., and
Cooper, M. D. (1988). Retrospective geometric correlation of
MR, CT, and PET images.Radiology, 169(3), 817–823.

Li, H., Manjunath, B. S., and Mitra, S. K. (1994a). Multi-sensor
image fusion using the wavelet transform. InInternational
conference on image processing, pp. 51–55, Los Alamitos, CA.
IEEE computer society press.

Li, H., Manjunath, B. S., and Mitra, S. K. (1995). Multisensor image
fusion using the wavelet transform.Graphical models and image
processing, 57(3), 235–245.

Li, S., Pelizzari, C. A., and Chen, G. T. Y. (1994b). Unfolding patient
motion with biplane radiographs.Medical physics, 21(9), 1427–
1433.

Little, J. A., Hill, D. L. G., and Hawkes, D. J. (1996). Deformations
incorporating rigid structures. InMathematical methods in
biomedical image analysis, pp. 104–113, Los Alamitos, CA.
IEEE computer society press.

Liu, A., Pizer, S., Eberly, D., Morse, B., Rosenman, J., Chaney, E.,
Bullitt, E., and Carrasco, V. (1994). Volume registration using
the 3D core. In Robb, R. A. (ed.),Visualization in biomedical
computing, Vol. 2359, pp. 217–226, Bellingham, WA. SPIE
Press.

Lunsford, L. D. (1988).Modern stereotactic neurosurgery. Martinus
Nijhoff, Boston, MA.

MacDonald, D., Avis, D., and Evans, A. C. (1994). Multiple surface
identification and matching in magnetic resonance images. In
Visualization in biomedical computing, Vol. 2359, pp. 160–169,
Bellingham, WA. SPIE press.

Maes, F., Collignon, A., Vandermeulen, D., Marchal, G., and
Suetens, P. (1996). Multi-modality image registration by max-
imization of mutual information. InMathematical methods in
biomedical image analysis, pp. 14–22, Los Alamitos, CA. IEEE
computer society press.

Maguire, G. Q., Noz, M., Rusinek, H., Jaeger, J., Kramer, E. L.,
Sanger, J.J., and Smith, G. (1991). Graphics applied to medical
image registration.IEEE Computer graphics and applications,
11(2), 20–28.

Maintz, J. B. A. (1996).Retrospective registration of tomographic
brain images. Ph.D. Thesis, Utrecht University.

Maintz, J. B. A., Beekman, F. J., de Bruin, W., van den Elsen, P. A.,
van Rijk, P. P., and Viergever, M. A. (1996a). Automatic regis-
tration and intensity scaling of SPECT brain images.Journal of
nuclear medicine, 37(5, supplement), 213P. abstract.



A Survey of Medical Image Registration 33

Maintz, J. B. A., van den Elsen, P. A., and Viergever, M. A. (1994).
Using geometrical features to match CT and MR brain images.
In Beolchi, L. and Kuhn, M. (eds),Medical imaging, analysis
of multimodality 2D/3D images, Vol. 19 of Studies in Health,
Technology and Informatics, pp. 43–52. IOS Press, Amsterdam.

Maintz, J. B. A., van den Elsen, P. A., and Viergever, M. A. (1995).
Comparison of feature-based matching of CT and MR brain
images. In Ayache, N. (ed.),Computer vision, virtual reality,
and robotics in medicine, Vol. 905 ofLecture notes in computer
science, pp. 219–228, Berlin. Springer-Verlag.

Maintz, J. B. A., van den Elsen, P. A., and Viergever, M. A. (1996b).
Comparison of edge-based and ridge-based registration of CT
and MR brain images.Medical image analysis, 1(2). in press.

Maintz, J. B. A., van den Elsen, P. A., and Viergever, M. A. (1996c).
Evaluation of ridge seeking operators for multimodality medical
image matching. IEEE Transactions on pattern analysis and
machine intelligence, 18(4), 353–365.

Maintz, J. B. A., van den Elsen, P. A., and Viergever, M. A.
(1996d). Registration of SPECT and MR brain images using
a fuzzy surface. In Loew, M. H. and Hanson, K. M. (eds),
Medical Imaging: Image processing, Vol. 2710, pp. 821–829,
Bellingham, WA. SPIE.

Malison, R. T., Miller, E. G., Greene, R., McCarthy, G., Charney,
D. S., and Innis, R. B. (1993). Computer-assisted coregistration
of multislice SPECT and MR brain images by fixed external
fiducials.Journal of computer assisted tomography, 17(6), 952–
960.

Mangin, J., Tupin, V. F., Bloch, I., Rougetet, R., R´egis, J., and
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