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e Some historical perspectives on bioimage informatics



What Is Bioimage Informatics?

e The main goal of bioimage informatics Is to use
computational methods to analyze and understand
Images of biological processes.

e Bioimage informatics is often considered as a branch of
bioinformatics and/or computational biology.

« Key components of bioimage informatics

- low-level image analysis (e.g. feature detection)

- high-level information extraction (e.g. pattern recognition)
- Image data management (database)

- Image visualization (graphics)



Origination of Bioimage Informatics Techniques

« Origination of bioimage informatics is driven by the
synergy of several forces (first meeting in 2005).

e Technical needs

- Changes to how biological systems are studied
- Changes to how drugs are developed

e Enabling techniques

- Automated sample and reagent preparation
- Automated liquid handling
- Automated image collection

- Cost effective data storage and access
- Automated image analysis techniques



Some Historical Perspectives

Digital image processing started to
become widely applied to bioimage
analysis in early 1980s.

- Shinya Inoue pioneered the use

of video devices and image
processing in microscopy.

Computational image analysis can
- improve image quality
—> extract quantitative measurements
—> contribute to image understanding

Shinya Inoue,
Marine Biology Lab, Woods Hole, MA



 Introduction to high-throughput / high-content screens



Introduction to High-Throughput Screening (1)

« The technique originated
approximately 30 years ago from
natural product screening for
pharmaceutical R&D.

e  Currently the technology is used
|n a broad range Of apphcatlons Table 1 Successful prototype identification dependent on: sample

diversity and number screened

S u C h a‘S - Traditional screening High throughput screening
_ 1 Single tube Array format 96-well
Pharmaceu“cal R&D Large assay volume ~1ml Small assay volume 50-100 ul
. Compound used ~5-10mg Compound used ~1ug
= BlOtECh n0|0gy R&D Assay components added singly = Assay components added
simultaneously
_ I I I Mechanical action 1:1 Mechanical action 1:96
Larqe Scale baSIC bIO|OQICa| Dry compounds—custom solution Compound file in solution—DMSO
Assay slow and laborious Assay fast and efficient (~ 1 min/step/
research Géwl poe
Screen 20-50 compounds/week/ Screen 1000-10 000 week/lab
lab
Limited number and diversity Unlimited number and diversity
screened screened

96 = 8x12, 384=16X24, 1536=32x48, 3456 = 48X72 Abbreviation: DMSO, dimethyl sulphoxide

Pereira & Williams, British. J. Pharmacology, 152:53-61, 2007.
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Introduction to High-Throughput Screening (Il

The basic concept of HTS is to perform
large numbers of biological tests or
experiments in parallel using automation |}
techniques to achieve very high
efficiency.

Core techniques

- Automated sample and reagent preparation
- Automated quuid and plate handling http://pubs.acs.org/cen/government/87/8725govl1.html

- Automated data collection and analysis

HTS systems typically rely on simple
readouts to achieve high efficiency.



Introduction to High-Content Screening (1)

High-content screening shares many of the core techniques
with high-throughput screening.

Major differences

- HCS typically get multiplex readouts from cell assays.

- HCS typically involves live cell imaging and aims to extract spatial
and temporal dynamics information.
- Heavy dependence on imaging and image analysis

- HCS aims to balance collecting comprehensive information with
achieving high efficiency (throughput).

D. L. Taylor, High Content Screening, Humana Press, 15t ed., 2006.

10



Introduction to High-Content Screening (1)

Misuses of the terms HTS and HCS are quite common.
The boundary between HTS and HCS is often blurred.

HTS and HCS often are used to provide a starting point for
more in-depth studies.
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Case Studies

[1] Periman et al, Multidimensional drug profiling by automated

microscopy, Science, 306:1194-1198, 2004.

[2] Neumann et al, High-throughput RNAI screening by time-lapse

Imaqing of live human cells, Nature Methods, 3:385-390, 2006.
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 Case I: a high content screen based on static cellular
Imaging (immunofluorescence)
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Experiment Design

Main goal: to characterize and predict effects Ccompound distribution:

of drugs at different concentrations on
mammalian cells.

100 drug compounds were tested. Among
them 10 were blindly tested.

Each compound is tested at 13
concentrations ranging from micromolar to
picomolar.

A 384 well plate is used, with 3000 cells per
well.

11 different probes. Two colors + cell nucleus
labeling per well. Nine images per well.

Experiments performed in duplicate.

Column Plate1 Plate2 Plate3 Plate4 Plate5 Plate6
1| DMSO | DMSO | DMSO DMSO | DMSO DMSO
2 1 21 M 61 81 DMSO
3 2 22 42 62 82 DMSO
4 3 23 43 63 83 DMSO
5 4 24 44 64 84 DMSO
6 5 25 45 65 85 DMSO
7 6 26 46 66 86 DMSO
8 7 27 47 67 87 DMSO
9 8 28 48 68 88 DMSO

10 9 29 49 69 89 DMSO
11 10 30 50 70 90 DMSO
12| DMSO | DMSO | DMSO DMSO | DMSO DMSO
13| DMSO | DMSO | DMSO DMSO | DMSO DMSO
14 11 31 51 71 91 DMSO
15 12 32 52 72 92 DMSO
16 13 33 53 73 93 DMSO
17 14 34 54 74 94 DMSO
18 15 35 55 75 95 DMSO
19 16 36 56 76 96 DMSO
20 17 37 57 77 97 DMSO
21 18 38 58 78 98 DMSO
22 19 39 59 79 99 DMSO
23 20 40 60 80 100 DMSO
24 | DMSO | DMSO | DMSO DMSO | DMSO DMSO
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Image Analysis and Quantification (1)

. Background subtraction A ouso

* Image segmentation
- nucleus segmentation

* Definition of descriptors (total=93) n @

Camptothecin (140 nM)

- nucleus: area, eccentricity, perimeter,
Intensity, ...
- actin: intensity, area, intensity ratio,...

O
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CaM AnnToNucIntRatio
pPERE_AnnToNucIntRatic

PCREE AnnToNucIntRatio
anillin AnnToNucIntRatio

P38 _AnnToMNucIntRatio
5C35_AnnToNucIntRatio
p33_AnnToNucIntRatio
p38_AnnulusAveIntensity
actin_ AnnulusAveIntensity
5C35_AnnulusAveIntensity
cFos_AnnToNucIntRatic

actin VarIntensity

actin AveIntensity

P38 _GrayScaleCentroidCffset
PERE_GrayScaleCentroidoffset
MT VarIntensity

DNA Fccentricity

DHA VarIntensity

actin AnnToNucIntRatio
5C35_GrayScaleCentroidOffset
DHA AvelIntensity

MT EnnulusAvelntensity
anillin GrayScaleCentroidOffset
MT AveIntensity
p533_GrayScaleCentroidCffset
anillin_ AnnulusAveIntensity
CaM GrayScaleCentroidCffset
cFos_GrayScaleCentroidOffset
MT AnnTcKucIntRatio
cFos_AnnulusiAveIntensity

DNA GrayScaleCentroidOffset
actin NucInttoDNARatio

P23 EnnulusAvelntensity
PERE AnnulusiAvelntensity
actin_GrayScaleCentroidCffset

List of Descriptors

p38_VarIntensity

DNA ShapeFactor

PCREE AnnulusiAvelIntensity
MT NucInttoDNARatio

PCREE GrayScaleCentroidfifset

cFos_Awvelntensity

MT GrayScaleCentroidOfifset
CaM Ennulushivelntensity
cFos_NuclInttoDNARatic
p38 NucInttoDNARatio
SC35_SC35toDNARatio
p38_RAvelntensity

actin TotallIntensity
5C35_AwveIntensity
SC35_VarSpeckleIntensity
SC35>_VarIntensity
5C35_SpeckleCount
p53_AveIntensity
5C35_Specklelhrea

DNA Solidity
5C35_AwveSpecklelIntensity
cFos_WVarlIntensity

CaM NucInttoDNARatio
p53_NucInttoDNARatio
cFos_Annulushrea
p53_AnnulusArea
cFos_TotalIntensity

DNA TotalIntensity

MT TotalIntensity
p53_VarIntensity
5C35_Annulushrea

anillin Annulusirea
anillin AveIntensity
anillin VarIntensity
pERE NucInttoDNARatic

MT AnnulushArea

actin Annulusirea
PCREE VarIntensity
pCREE NucInttoDNARatio
pPCREE_AveIntensity
CaM Annuluskrea
pCREE_Ennulusfrea
PERE Awvelntensity
PERE Totallntensity
PCREB Totallntensity
CaM_TotalIntensity

A. DNA 1 Area
2 Eccentricity
3 Perimeter
4 Shape Factor
5 Total Intensity
6 Average Intensity
7 Intensity Variance
8 Gray Scale Centroid
Offset
9 Solidity

Pixel area of nuclear region

Ratio of axes of the best ellipse fit to nuclear region

Area in pixels of nuclear region boundary returned by

Matlab primitive bwperim

4n Area / (Perimeter)2

Integrated intensity in nuclear region

Average intensity in nuclear region

Variance of intensity in nuclear region

Distance in pixels between grayscale and binary

centers of mass for nuclear region

Ratio of area of the nuclear region to the area of its

convex hull
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Image Analysis and Quantification (I1)

e Population response R ——

nuclear intensity  nuclear intensity nucleus ratio

- based on cumulative distribution
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Response Comparison of Different Drugs

Topoisomerase Protein Degradation HDAC

Camptothecin Etoposide MG132 Apicidin Scriptaid
Mlcrotubule Actin

Taxol Epothilone B Cytochalasin D  Latrunculin B
Protein Synthesis

Cycloheximide Emetine Anisomycin Puromycin Didemnin B
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Classification based on TISS Clustering (1)

A, Shift-correlations
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Classification based on TISS Clustering (I1)

TISS p-value
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Heterogeneity in Drug Response

« MG132: inhibitor of protein
degradation A

o Camptothecin: inhibitor of
transcription

mmpto-
iticorme -
he black
1 values
ontribu-
ible p53




e (Case Il a high content screening based on dynamic
cellular imaging (live cell imaging)
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Experiment Setup

(A)

e Atotal of 49 targeted genes relatedto
chromosome segregation or nuclear o
structure. o S XN

« Gene knockdown through RNA e | P
I \
Interference. l“""::m

mRNA_l AAAA
e Using four 384 well plates in parallel. i
Alberts MBoC 5e

e Around 50 cells per well.

e 30 minutes per frame for 44 hours.
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Case |l: Workflow

Preparation of siRNA
transfection mix

Spotting of
siRNA microarray

400 um
6h l Cell seeding

48 replicates &G):}

&EA -8

a4 j ~37,000 images

Automated time-lapse
image acquisition

~100 Gb per microarray

(N (=

——
Automated image . L..._D I_EE
analysis
|
N (B
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RNA Uptake Validation

S

Case |l

HH
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A Sample Video
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Case Il: Image Analysis (l)

» Step I: image segmentation (optimized local adaptive thresholding).
o Step II: feature classification (texture + morphology).

« Step lll: event detection (classification, time, additional background
control).

49.5h

50.0h 50.5 h 51.0h 51.5h 52.0 h 52.5h

SiICDC16

Interphase [l Mitosis []
Automatic nuclei classification

Apoptosis [l Shape [l

SINUP107 S & & & t' 2v®
- 1& ® K

b siINCENP siSYNEZ siPLK1
SINUMAT (e E L AaY
24,5h 30.0h 56.0 h 28.5h 34.0h 57.5h 215h 355h  425h
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Case Il: Image Analysis (Il

O Mitotic index H Shape index B Apoptotic index
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Case Study Il: Information Mining

» Statistical clustering based on a P b oo ¢ e
both penetration and temporal
dynamics.

NUMA1
NUP153
CBX3
SEHIL
CCNB2
RANBPZ2
CBX1
cocz7
CDH1
CBX5
H2AFY ]
SMC4L1
ANAPC11

« Validation using results from
small scale studies.
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KIF23
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H3F3A
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Q
o
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Penetrance: Phenotype classes
| o = =

None Weak  Strong Mitosis Shape Apoptosis



Summary: HTS & HCS

Main properties of HTS and HCS applications
- Large volume of image data

—>Both data and data analysis must be organized.

- Multidimensional readout
- High-dimension data analysis
- Connection to biological questions

Robust yet sensitive image analysis; Statistical data
analysis.

Data quality control to avoid artifacts.
- Internal consistency check.
- Validation using other techniques.

Visualization and interpretation of data.
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« Empirical performance
Informatics algorithm

evaluation

of

bioimage
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Overview of Algorithm Evaluation (1)

 Two sets of data are required

- Input data
- Corresponding correct output (ground truth)

» Sources of input data

- Actual/experimental data, often from experiments
- Synthetic data, often from computer simulation

e Actual/experimental data
- Essential for performance evaluation
- May be costly to acquire
- May not be representative

- Ground truth often is unknown



Overview of Algorithm Evaluation (Il)

 Simulated data

Advantages
- Ground truth is known

- Usually low-cost

Disadvantages
- Difficult to fully represent the original data

* Realistic synthetic data

e Quality control of manual analysis



Test Protocol Development

* Implementation

- Source codes are not always available and often are on
different platforms.

e Parameter setting
- This is one of the most challenging issues.

 Quantification of success rate

Table I
Different Types of Output of a Simple Event Test

Classification Definition
True positive (TP, true acceptance, true match) A positive event is correctly identified as positive
True negative (TN, true rejection, true nonmatch) A negative event is correctly identified as negative
False negative (FN, false rejection, false nonmatch, type I error) A positive event is incorrectly identified as negative

False positive (FP, false acceptance, false match, type II error) A negative event is incorrectly identified as positive




Test Administration

e Comparison of algorithms

M. Heath, S. Sarkar, T. Sanocki, and K.W. Bowyer, "A Robust Visual Method for
Assessing the Relative Performance of Edge-Detection Algorithms" IEEE
Transactions on Pattern Analysis and Machine Intelligence, Vol. 19, No. 12, pp. 1338-
1359, 1997.

Barron, J.L., Fleet, D.J., and Beauchemin, S. Performance of optical flow techniques.
International Journal of Computer Vision, 12(1):43-77, 1994.

e Large-scale open evaluation of algorithms is
often superior but costly.



Examples of Open Benchmarking Datasets

 Berkeley segmentation dataset and benchmark

"A Database of Human Segmented Natural Images and its Application to Evaluating
Segmentation Algorithms and Measuring Ecological Statistics" D. Martin, C. Fowlkes,
D. Tal, J. Malik, ICCV2001.

http://www.eecs.berkeley.edu/Research/Projects/CS/vision/bsds/

e Retrospective image registration project

"Comparison and evaluation of retrospective intermodality image brain image
registration techniques”, Journal of Computer Assisted Tomography, J. West et al,
vol.21, pp. 554-566, 1997

http://www.insight-journal.org/rire/



Evaluation of Algorithm Efficiency

 Two complementary approaches

- Theoretical computational complexity analysis
- Empirical evaluation of efficiency

Table 11

Commonly Used Time Complexity Terms

If running time of an algorithm Increase in running time when N

is proportional to Its time complexity is called is increased by 10
1 Constant 0

log N Logarithmic 2.303

N Linear 10

Nlog N N log N or linearithmic 23.03
NN, Polynomial 100, 1000, ...

2N Exponential 1024




References on Performance Evaluation

[1] J. F. Dorn, G. Danuser, G. Yang, Chapter 22 Computational
processing and analysis of dynamic fluorescence image data, in
Methods in Cell Biology, vol. 85, pp. 497-538.

[2] K. Bowyer, P. J. Phillips, Empirical evaluation techniques in
computer vision, IEEE Press, 1998.

[3] H. I. Christensen, P. J. Phillips, Empirical evaluation technigues in
computer vision, World Scientific, 2002,




Questions?
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Quantification of Success Rates (continued)

* Rigorous approaches on feature detection can be
learned from the field of signal detection theory.

« Some references on signal detection theory can be

found from
http://en.wikipedia.org/wiki/Detection_theory



