Bioimage Informatics

Lecture 11, Spring 2012

Bioimage Data Analysis (III):

Edge Detection; Line/Curve Detection

RAY AND STEPHANIE LANE Center for Computational Biology

Carnegie Mellon

Outline

- Review: low-level feature detection
- Overview of edge detection
- Line/curve detection using the Hough transform

- Review: low-level feature detection
- Overview of edge detection
- Line/curve detection using the Hough transform

Feature Detection: Points/Particles

Fluorescent speckles in a Xenopus extract spindle

Vesicles transported in a Drosophila motor neuron

Feature Detection: Lines/Curves

T. Wittmann et al, *J. Cell Biol.*, 161:845, 2003.

http://www.cell.com/cell_picture_show

Nikon Small World, 2003 Torsten Wittmann, UCSF Filamentous actin and microtubules (structural proteins) in mouse fibroblasts (cells) (1000x)

An Image from Lab Visit

Bovine pulmonary artery endothelial (BPAE) cells stained with a combination of fluorescent dyes. Mitochondria were labeled with red-fluorescent MitoTracker Red CMXRos, F-actin was stained using green-fluorescent Alexa Fluor 488 phalloidin, and blue-fluorescent DAPI was used to label the nuclei.

Feature Detection: Regions

Mitochondria in mouse hippocampal neuron, James Lim, LBNL

A neutrophil chasing a bacterium. Devreotes Lab, Johns Hopkins U.

Marr's Theory of Visual Information Processing

- David Marr (Jan. 19,1945 Nov. 17, 1980)
- Three levels of cognition
 - Computational level
 - Algorithmic/representation level
 - Implementational level
- Three stages of vision
 - Primal sketch
 - 2.5D sketch
 - 3D model

Vision: A computational investigation into the human representation and processing of visual information

- Review: low-level feature detection
- Overview of edge detection
- Line/curve detection using the Hough transform

Edge Detection

• What is an edge?

An edge point, or an edge, is a pixel at or around which the image intensities undergo a sharp change.

Motivation: Edge in Images

• The edge can be treated as a 1D signal when examined in the normal direction.

a b c

FIGURE 10.8 From left to right, models (ideal representations) of a step, a ramp, and a roof edge, and their corresponding intensity profiles.

Gonzalez & Woods, DIP 3/e

Edge Can be Identified by Calculating Gradient

Gonzalez & Woods, DIP 3/e

How to Calculate Image Gradient

 Calculation of image gradient follows standard numerical differentiation scheme:

$$f(x+h) = f(x) + hf'(x) + \frac{1}{2}h^2 f''(x) + O(h^3)$$

$$f(x-h) = f(x) - hf'(x) + \frac{1}{2}h^2 f''(x) + O(h^3)$$

$$f'(x_0) = \frac{f(x_0+h) - f(x_0-h)}{2h} + O(h^2)$$

• In an image, the first and second derivatives:

$$\frac{\partial I(i,j)}{\partial x} = I_x(i,j) = \frac{I(i+1,j) - I(i-1,j)}{2 \cdot h} + O(h^2)$$
$$\frac{\partial^2 I(i,j)}{\partial x^2} = I_{xx}(i,j) = \frac{I(i+1,j) - 2I(i,j) + I(i-1,j)}{h^2} + O(h)$$

Gradient Calculation is Sensitive to Noise

 Without image smoothing, calculation of derivatives becomes highly sensitive to noise.

FIGURE 10.11 First column: Images and intensity profiles of a ramp edge corrupted by random Gaussian noise of zero mean and standard deviations of 0.0, 0.1, 1.0, and 10.0 intensity levels, respectively. Second column: First-derivative images and intensity profiles. Third column: Second-derivative images and intensity profiles.

Gonzalez & Woods, DIP 3/e

Edge Detection Procedure

- Step I: noise suppression
- Step II: edge enhancement
- Step III: edge localization

Canny, J., *A Computational Approach To Edge Detection*, IEEE Trans. Pattern Analysis and Machine Intelligence, 8(6):679–698, 1986.

Why Use Gaussian Kernel for Smoothing

- Gaussian kernel is not the only smoothing kernel.
- It has several important advantages:
 - Convolution of a Gaussian with another Gaussian is Gaussian.
 - Efficiency. Gaussian kernel is separable.
 - Repeated smoothing with a low-pass filter will eventually converge to Gaussian smoothing.

Combination of Noise Suppression and Gradient Estimation (I)

- Notation:
 - J: raw image;
 - *I*: filtered image after convolution with Gaussian kernel G.
- A basic property of convolution

$$\frac{\partial (G * J)}{\partial x} = \frac{\partial I}{\partial x} = I_x = \frac{\partial G}{\partial x} * J \qquad \qquad \frac{\partial (G * J)}{\partial y} = \frac{\partial I}{\partial y} = I_y = \frac{\partial G}{\partial y} * J$$

$$E_s(x_0, y_0) = \sqrt{I_x^2(x_0, y_0) + I_y^2(x_0, y_0)} \qquad \qquad \leftarrow \text{Edge strength}$$

$$E_o(x_0, y_0) = \arctan \frac{I_y(x_0, y_0)}{I_x(x_0, y_0)} \qquad \leftarrow \text{Edge orientation}$$

Combination of Noise Suppression and Gradient Estimation (II)

• Gaussian kernel in 1D

$$G(x) = \frac{1}{\sqrt{2\pi\sigma}} e^{-\frac{x^2}{2\sigma^2}}$$

• First order derivative

$$G'(x) = \frac{-x}{\sqrt{2\pi}\sigma^3} e^{-\frac{x^2}{2\sigma^2}}$$

• Second order derivative

$$G''(x) = \frac{-x}{\sqrt{2\pi}\sigma^3} e^{-\frac{x^2}{2\sigma^2}} \left[1 - \frac{x^2}{\sigma^2}\right]$$

Combination of Noise Suppression and Gradient Estimation (III)

• Implementation

$$G(x, y; \sigma_x, \sigma_y) = \frac{1}{2\pi\sigma_x\sigma_y} \exp\left\{-\frac{1}{2}\left(\frac{x^2}{\sigma_x^2} + \frac{y^2}{\sigma_y^2}\right)\right\} = \frac{1}{\sqrt{2\pi}\sigma_x} \exp\left\{-\frac{1}{2}\frac{x^2}{\sigma_x^2}\right\} \cdot \frac{1}{\sqrt{2\pi}\sigma_y} \exp\left\{-\frac{1}{2}\frac{y^2}{\sigma_y^2}\right\}$$
$$= G(x, \sigma_x) \cdot G(y, \sigma_y)$$

$$\frac{\partial G(x, y; \sigma_x, \sigma_y, \theta)}{\partial x} = \frac{dG(x, \sigma_x)}{dx} G(y, \sigma_y) \qquad \frac{\partial G(x, y; \sigma_x, \sigma_y, \theta)}{\partial y} = G(x, \sigma_x) \frac{dG(y, \sigma_y)}{dy}$$

- Advantages:
 - Reduced computational cost
 - Calculation of gradient can run in parallel in both directions

Edge Enhancement

• Step I: For each pixel $I(x_0,y_0)$, calculate the gradient

$$\frac{\partial I}{\partial x}\Big|_{x=x_0} \qquad \frac{\partial I}{\partial y}\Big|_{y=y_0}$$

• Step II: Estimate edge strength

$$E_{s}(x_{0}, y_{0}) = \sqrt{I_{x}^{2}(x_{0}, y_{0}) + I_{y}^{2}(x_{0}, y_{0})}$$

• Step III: Estimate edge direction

$$E_o(x_0, y_0) = \arctan \frac{I_y(x_0, y_0)}{I_x(x_0, y_0)}$$

Calculation of Image Gradient

Non-Maximum Suppression

- For each pixel *I*(x₀,y₀),compare the edge strength along the direction perpendicular to the edge
- An edge point must have its edge strength no less than its two neighbors.

Hysteresis Thresholding

• The main purpose is to link detected edge points while minimizing breakage.

Basic idea

- Using two thresholds T_L and T_H
- Starting from a point where edge gradient magnitude higher than T_H
- Link to neighboring edge points with edge gradient magnitude higher than T_L

Influence of Scale Selection on Edge Detection

Figure 1.4: Edges and ridges computed at different scales in scale-space (scale levels t = 1.0, 4.0, 16.0, 64.0 and 256.0 from top to bottom) using a differential geometric edge detector and ridge detector, respectively. (Image size: 256*256 pixels.)

Lindeberg (1999) <u>Principles for automatic scale selection</u>, in: B. J"ahne (et al., eds.), Handbook on Computer Vision and Applications, volume 2, pp 239--274, Academic Press.

Edge Detection Demo

- Review: low-level feature detection
- Overview of edge detection
- Line/curve detection using the Hough transform

Line/Curve Detection by

- A variety of techniques are available.
 - Spatial domain
 - e.g.by edge point detection and grouping
 - Transform domain
 - e.g. by Hough transform

Basic Concept of Hough Transform

• A simple example: representing the lines passing through (x_0, y_0) in the parameter space.

HT Algorithm Implementation Details

- Parameterization using y=mx+n fails for the case of vertical lines.
- A different way of parameterization:

$$\rho = x \cdot \cos \theta + y \cdot \sin \theta$$

• Exhaustive search the space of $[\rho, \theta]$ can be time-consuming.

Generalization of the HT Algorithm for Curve Detection

- The HT algorithm is a voting algorithm. The key idea is to convert a (difficult) pattern recognition problem into a (simple) peak detection problem.
- Hough transform can be generalized to detect circles, ellipses, or any curve that can be parameterized.
- Examples

Circles with known radius but unknown center

$$(x - x_c)^2 + (y - y_c)^2 = R^2$$
 $(x_c - x_i)^2 + (y_c - y_i)^2 = R^2$

Ellipses with known major and minor semi-axes but unknown center

$$\frac{(x-x_c)^2}{a^2} + \frac{(y-y_c)^2}{b^2} = 1 \quad \Longrightarrow \quad \frac{(x_c-x_i)^2}{a^2} + \frac{(y_c-y_i)^2}{b^2} = 1$$

Evaluation of Parametric Transform Based Curve Detection

- The curve to be detected can be of arbitrary form as long as it can be parameterized.
- Strengths:
 - Handles occlusion and partial line/curves well.
 - Relatively robust to noise
 - Capable of detecting multiple instances
- Limitations

 \rightarrow For curves with multiple parameters, the voting/search can be costly.

 \rightarrow Other shapes can also generate spurious peaks.

Comments on Line/Curve Detection

• Curves features are very common in bioimages.

microtubules

neurons

• General curve feature detection will be addressed in the next lecture.

Questions?