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* Overview of image feature detection



Image Feature Detection

Point/particle features:
diffraction-limited
features

Line/curve features

Region/blob features

Feature detection is
often the first step in
image data analysis.
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Feature Detection: Points/Particles

Fluorescent speckles in a Xenopus extract spindle

Vesicles transported in a Drosophila motor neuron



» Point/particle feature detection



Point Feature Detection (I)

In bioimaging a point is more often referred to as a particle or
a single particle. Point detection is also referred to as "(single)
particle detection”.

Some research articles use "particle detection" and "particle
tracking" interchangeably. This may cause confusion.

Detection of point features is particularly important for
bioimage analysis because a wide variety of cellular
structures are diffraction limited and appear as particles.



Point Feature Detection (ll)

« What information is extracted from feature detection:
- point position: sub-pixel resolutions are often required.

- point intensity: may contain information about the number of
molecules within the diffraction limit.

« The main purpose of point detection, and bioimage analysis in
general, is to get accurate and precise measurements.




Microscope Camera Pixel Size Calibration
« Example: Photometrics CoolSnap HQ2

http://www.photomet.com/products/ccdcams/coolsnap hqg2.php

« Image features are first measured in pixel coordinates

. M-x
b= -
y

X: actual feature length

y: measured feature length (in pixel)
p: pixel size

M: magnification




Pixel Resolution Limit in Point Detection

Electron Multiplying EMCCD
CCD - Single Imaging
Architecture ixel Modes

Photodiode
L]

ensor i
Artay Figure 1
1115\ output -
S Node  Amplifier
Transfer

Direction

Frame
Transfer

Array Extended

Multiplication
Register

10



Application:
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What is a Particle?

ONE perspective: A point/particle is a local intensity maximum
whose level is substantially higher than its local background.
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Analysis Procedure of Particle Detection
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Step 1: Low Pass Filter (|

The Fourier transform
of a Gaussian kernel is
Gaussian.
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Impact of c selection

- A small ¢ allows weaker

features to be picked up but at : ; _
the expense of more false Sigma =20, G =30
positives.

- Allarge o selects strong Sigra = 60, @ =30
features but at the expense of
more true negatives.

15



Step 1: Low Pass Filter (Il)

* Impact of o selection

- Applying a o that is too large will cause —
substantial shifting and merging of —_— — —
features. —_—
W

: : ——— T T

- Applying a ¢ that is too small can not e —~
effectively suppress noise. o~ ~—~
w
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* Using a small o is usually e e
preferred. SN AT AT

Figure 1. A sequence of gaussian smoothings of a
waveform, with ¢ decreasing from top to bottom. Each graph
is a constant-¢ profile from the scale-space image.

A commonly used strategy is to
set o as a third of the Rayleigh
limit.

A. Witkin, Scale-space filtering, ICASSP 1984.
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Step 2: Local Maximum Detection

A local maxima has an
iIntensity that is no less
than those of its neighbors.

Large masks give more
stable results but lower

detection resolution.
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Step 3: Local Background Detection
* Alocal minima has an _
iIntensity level that is
no higher than those
of its neighbors.
* Local background is

detected through 3X3 mask 5X5 mask
detection of local

iIntensity minima. olelee]e
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Step 3: Establishing Corresponding Between
Local Maxima and

Different approaches can
be used to establish
correspondence between
local maxima and local
minima.

- Nearest neighbor
- Delaunay triangulation

_0OCa

Minima

® Local intensity maxima

yY s

A Local intensity minima
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Delaunay Triangulation

* For a given set of points in a
plane, its Delaunay triangulation
satisfies the condition that every
circumcircle of a triangle is empty.

« Some nice properties of Delaunay
triangulation

- It favors large internal
angles.

- It links points in a nearest
neighbor manner.

http://www.cs.cornell.edu/home/chew/Delaunay.html

20



Step 4: Statistical Selection of Features

Intensity

Al 64

Q =2.5 Sigma =2

Q: selection quantile

Q =40, Sigma =2

Q =100, Sigma =2




Introduction to the t-distribution

For a normally distributed variable x~N(u; o), the mean of n samples

follows a normal distribution 0

The normalized _2~# _ N (0,1)
ol~n

When we substitute standard deviation for g, we get the t-distribution
with n-1 degrees of freedom

X— 1 1 _\2
where s = —E X. — X
s/+/n \/ 1-_(' )
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A Review of Two Sample t-test

wo sample t statistic
X —X)—(— 4

1
Table entry for p and C is Probability p
the critical value t* with
probability p lying to its
right and probability C lying -
between —t* and t*. ¢
TABLE D
t distribution critical values
Upper-tail probability p
df 25 20 15 10 05 025 02 o1 005 0025 .001 0005
1 1.000 1.376 1.963 3.078 6.314 1271 15.89 31.82 127.3 3183 636.6
2 0.816 1.061 1.386 1.886 2.920 4.303 4.849 6.965 14.09 2233 31.60
3 0.765 0.978 1.250 1.638 2353 3.182 3.482 4541 7.453 10.21 12.92
4 0.741 0.941 1.190 1.533 2,132 2.776 2.999 3.747 5.598 7.173 8.610
5 0.727 0.920 1.156 1.476 2.015 2.571 2.757 3.365 4773 5.893 6.869
6 0.718 0.906 1.134 1.440 1.943 2.447 2,612 3.143 4317 5.208 5.959
7 0.711 0.896 1.119 1415 1.895 2.365 2517 2.998 4.029 4785 5.408
8 0.706 0.889 1.108 1.397 1.860 2.306 2440 2.896 3.833 4.501 5.041
9 0.703 0.883 1.100 1.383 1.833 2.262 2.398 2.821 3.690 4297 4.781
10 0.700 0.879 1.093 1.372 1.812 2228 2359 2.764 3.581 4.587
11 0.697 0.876 1.088 1.363 1.796 2.201 2328 2.718 3.497 4.437
12 0.695 0.873 1.083 1.356 1.782 2.179 2303 2.681 3.428 4318
13 0694 0870 1.079 1350 1771 2,160 2282  2.650 3372 4.221
14 0.692 0.868 1.076 1.345 1.761 2.145 2264 2.624 3326 4.140
15 0.691 0.866 1.074 1.341 1.753 2.131 2.249 2.602 3.286 4.073
16 0.690 0.865 1.071 1.337 1.746 2.120 2235 2.583 3.252 4.015
17 0.689 0.863 1.069 1.333 1.740 2.110 2224 2.567 3222 3.965
13 0.688 0.862 1.067 1.330 1.734 2.101 2214 2.552 3.197 3.922
19 0.688 0.861 1.066 1.328 1729 2.093 2.205 2.539 3.174 3.883
20 0.687 0.860 1.064 1.325 1725 2.086 2.197 2528 3.153 3.850
21 0.686 0.859 1.063 1.323 121 2.080 2.189 2518 3.135 3.819
22 0.686 0.858 1.061 1.321 1.717 2074 2,183 2.508 3.119 3.792
23 0.685 0.858 1.060 1.319 1.714 2.069 2177 2.500 3.104 3.768
24 0.685 0.857 1.059 1.318 1.711 2.064 2172 2.492 3.091 3.745
25 0.684 0.856 1.058 1.316 1.708 2.060 2,167 2.485 3.078 3.725
26 0.684 0.856 1.058 1.315 1.706 2.056 2.162 2.479 3.067 3.707
27 0.684 0.855 1.057 1314 1.703 2.052 2.158 2473 3.057 3.690
28 0.683 0.855 1.056 1.313 1.701 2.048 2.154 2.467 3.047 3674
29 0.683 0.854 1.055 1311 1.699 2.045 2.150 2.462 3.038 3.659
30 0.683 0.854 1.055 1.310 1.697 2.042 2.147 2.457 3.030 3.385 3.646
40 0.681 0.851 1.050 1.684 2.021 2,123 2423 2.971 3.307 3.551
50 0.679 0.849 1.047 1.676 2.009 2.109 2.403 2.937 3.261 3.496
60 0.679 0.848 1.045 1.671 2.000 2.009 2.390 2.915 3232 3.460
80 0.678 0.846 1.043 1.664 1.990 2.088 2.374 2.887 3.195 3.416
100 0.677 0.845 1.042 1.660 1.984 2.081 2364 2.871 3174 3.390
1000 0.675 0.842 1.037 1646 1.962 2.056 2330 2.813 3.098 3.300
7 0.674 0.841 1.036 1.645 1.960 2.054 2326 2.807 3.001 3.2901
509 60% 70% 80% 90% 95% 96%% 98% 999 99.5% 99.8% 99.9%

Confidence level C
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Feature Intensity Measurement

* Intensity calculation
with background
subtraction

1

. = i

Inet_lmax ZIBG
N i

N: number of local minima
used to calculate background

|- Net intensity

A

® Local intensity maxima

A Local intensity minima



Camera Noise Model

Signal S=1-QE-T

Signal shot noise Nau =vS

Camera noise N, =vD-T

Ndark = \/N

Total noise N, =Nz, +N?

read

2
+ N dark

2
read

2
+ N dark
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Demonstration
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Reproducible research in computational science

28



Open Source & Reproducible Research

An article about computational science in a scientific publication is not the scholarship itself, it

is merely advertising of the scholarship. The actual scholarship is the complete software

development environment and the complete set of instructions which generated the figures.
—D. Donoho (http://www-stat.stanford.edu/~donoho/)

 Jon Claerbout is often credited as the first who proposed reproducible
research.

* There are challenges. But these challenges can be overcome.

» Methods for public-funded biological studies should be open-source.

http://reproducibleresearch.net/index.php/Main_Page

http://sepwww.stanford.edu/data/media/public/sep/jon/
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Open Source & Reproducible Research (ll)

« Current literatures of image processing and computer vision often
are formulated mathematically and do not provide source code.

« Challenges
- implementation (numerical issues)
- parameter tuning
- robustness a major performance issue
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Some General Comments

It is possible but limiting to consider bioimage analysis as just
another application.

Excellent research opportunities in bioimage informatics

Challenges
- Solid training in image processing and computer vision
- Interdisciplinary background and thinking
- For identifying and solving problems
- For collaboration
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Questions?
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