BME 42-620 Engineering Molecular Cell Biology

Lecture 21:

Cell Signaling (II)

Chapter 15



### Final Exam Papers

- 1) R. Delanoue & I. Davis, <u>Dynein anchors its mRNA cargo after apical transport in the</u> <u>Drosophila blastoderm embryo</u>, *Cell*, 122:97-106, 2005.
- 2) D. Levy & R. Heald, <u>Nuclear size is regulated by importin α and Ntf2 in Xenopus</u>, *Cell*, 143:288, 2010.
- 3) S. Ally, A. G. Larson, et al, <u>Opposite-polarity motors activate one another to trigger cargo</u> <u>transport in live cells</u>, *Journal of Cell Biology*, 187:1071-1082, 2009.
- 4) Y. Shimamoto, Y. T. Maeda, et al, <u>Insights into the micromechanical properties of the</u> <u>metaphase spindle</u>, *Cell*, 145:1062-1074, 2011.
- 5) C. A. Wilson, M. A. Tsuchida, et al, <u>Myosin II contributes to cell-scale actin network</u> <u>treadmilling through network disassembly</u>, *Nature*, 465:373-377, 2010.
- 6) A. Levskaya, O. D. Weiner, W. A. Lim, C. A. Voigt, <u>Spatiotemporal control of cell signaling</u> <u>using a light-switchable protein interaction</u>, *Nature*, 461:997-1001, 2009.

### Final Exam Time & Location

- Available final exam dates
  - Dec. 9, 11 (morning)
  - Dec. 14, 15, 16
  - Dec. 10 may be possible
- Location
  - Mellon Institute 411 (in the former Lane Center)
  - Other locations possible

### Final Exam Presentation Format (I)

- Each presentation should include three sections
  - Background
  - Data presentation
  - Critical review
- Time allocation
  - Background section: approximately 15 minutes
  - Data presentation: ~45-60 minutes
  - Critical review section: approximately 10 minutes

### Final Exam Presentation Format (II)

- Organization
  - For each group, approximately one student  $\rightarrow$  one section
  - Background section should be brief; Give details but be selective
  - Data presentation should include a slide summarizing main messages

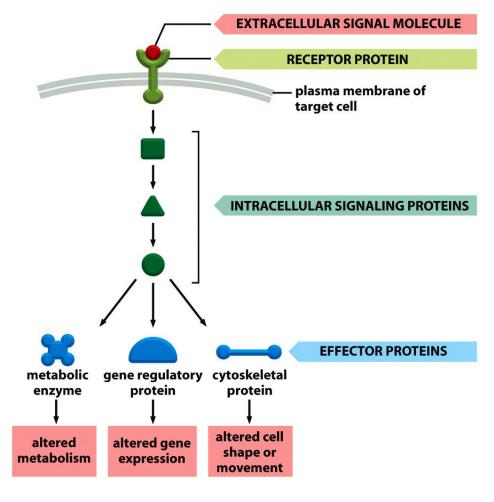
All figures in the main text must be covered

- Critical review can accompany data presentation
- Review section may include Whether the data and methods are sound Whether the logic development is sound Limitations, white space Writing style

### Final Exam Presentation Format (III)

- Each presentation will be graded based on
  - Accuracy, clarity, logic, & completeness of presentation of all sections
  - Quality of slides (as the final report); Give proper citations
- For each group, the presentation PPT file will serve as the final group report.
- Each student should turn in a two-page report following the standard instructions of reading assignments.

# Outline


- Overview of cell signaling
- Classification of signaling related proteins
- Receptors
- Signaling protein transducers
- Second messengers

- Overview of cell signaling
- Classification of signaling related proteins
- Receptors
- Signaling protein transducers
- Second messengers

## **Overview of Cell Signaling**

#### Sources of extracellular signal

- Non-cellular environment
- Cellular environment (cell-cell communication)
- Hundreds of types of signals
- Cells signaling
  - Stimulus sensing; communication
  - Information processing; decision making
- ↓Receptors
   ↓Signal transducers
   ↓Effector proteins
- Signaling pathways regulate nearly all cellular functions.



Alberts MBoC 5e

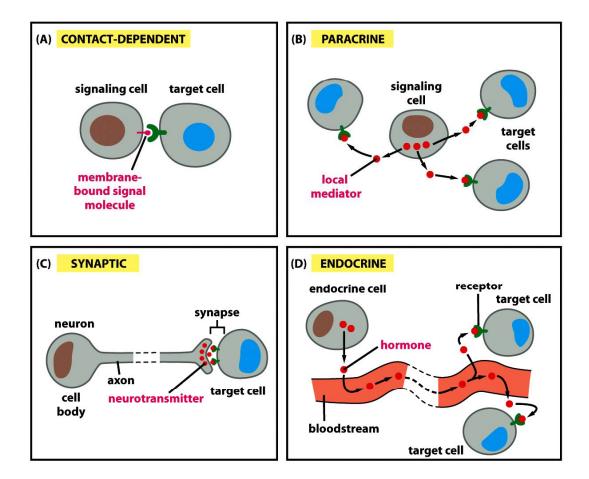
### Membrane & Intracellular Receptors

۲

•

۲

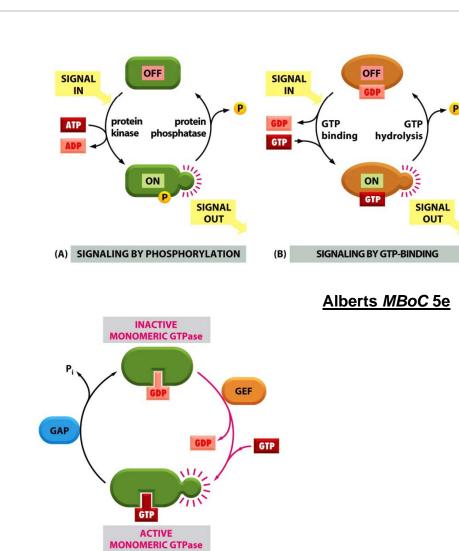
٠


specific.

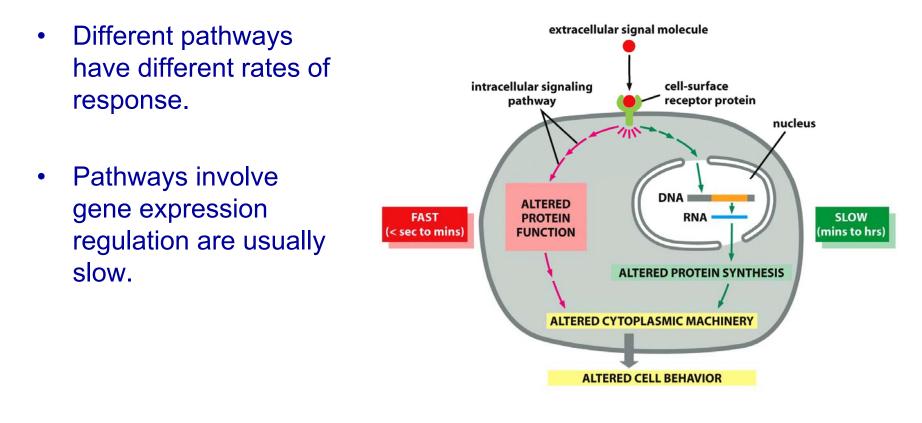
surface.

**CELL-SURFACE RECEPTORS Receptors bind signaling** plasma membrane molecules (ligands) cell-surface receptor protein Receptors are highly sensitive and hydrophilic signal - Typical signal molecule target cell molecule concentration <10<sup>-8</sup> M - More than 1500 human genes **INTRACELLULAR RECEPTORS** encode receptors small hydrophobic signal molecule Most receptors are at the cell target cell carrier protein Some receptors are intracellular nucleus (e.g. light, gas receptors). intracellular receptor protein Alberts *MBoC* 5e

### General Principles of Signaling (I)

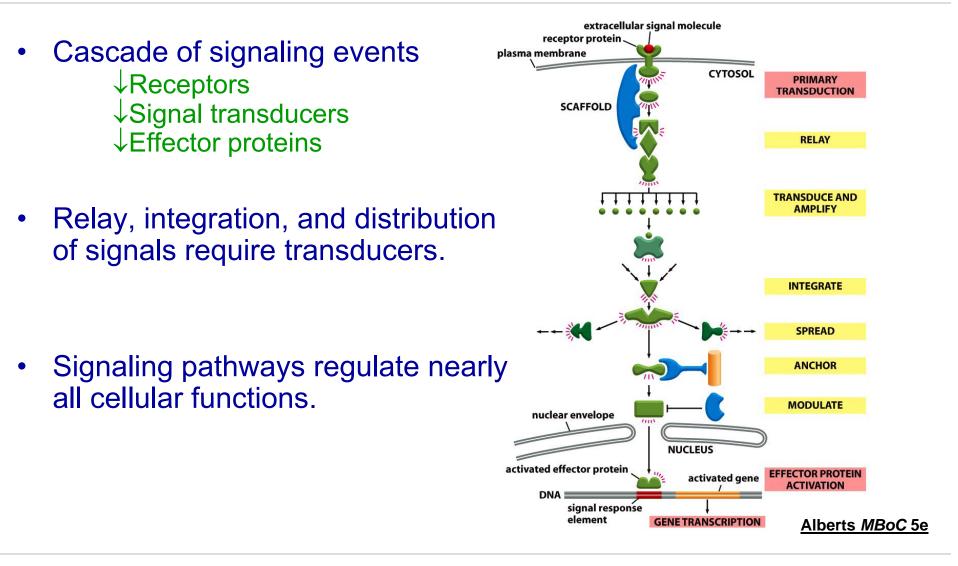

- Four forms of intercellular signaling
- Paracrine signaling acts locally over different types of cells.
- Autocrine signaling acts locally over the same types of cells including themselves.
- Endocrine signaling acts over long distance.




Alberts MBoC 5e

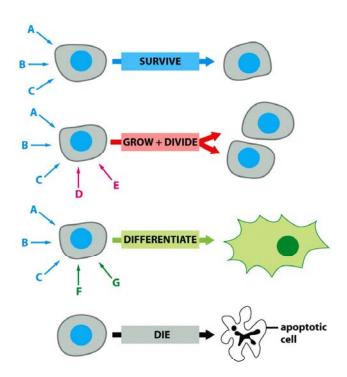
### General Principles of Signaling (II)

- Many signaling proteins act as molecular switches
- Two ways to activate/deactivate signaling proteins
- Human genomes encodes ~520 kinases and ~150 phosphatases
- Two main types of kinases
  - tyrosine kinase
  - serine/threonine kinase
- Two types of GTP-binding proteins
  - Trimeric G proteins
  - Monomeric GTPases




### **General Principles of Signaling (III)**

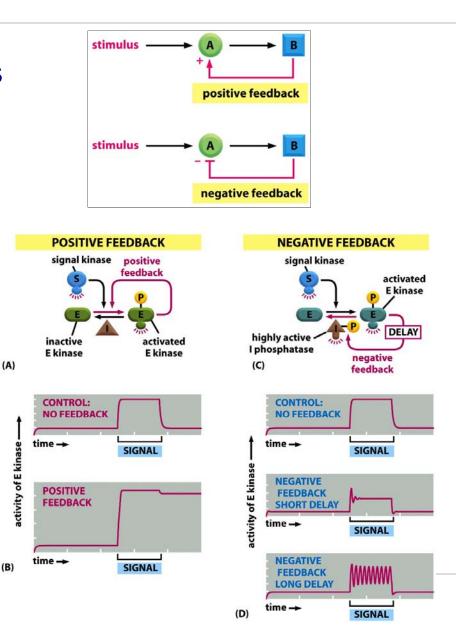



Alberts MBoC 5e

# General Principles of Signaling (IV)

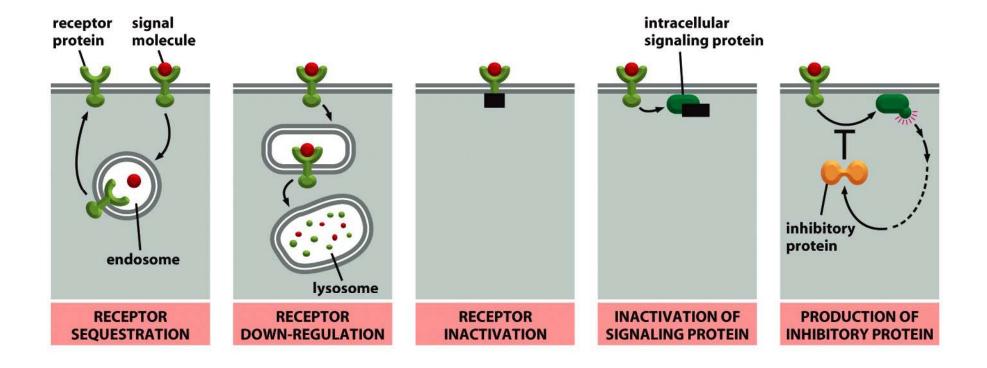


### Specific Reponses of Cells to Signaling


- A cell in a multicellular organism may be exposed to hundreds of signals.
- Different types of cells respond differently to the same type of signals.
- A major challenge is to understand how the cells process such information and make decisions.



# Feedback Loops in Signaling Networks


- Two types of feedback loops
  - Positive feedback
  - Negative feedback
- Positive feedback loop

   Bistability
- Negative feedback loop
   Robustness to noise

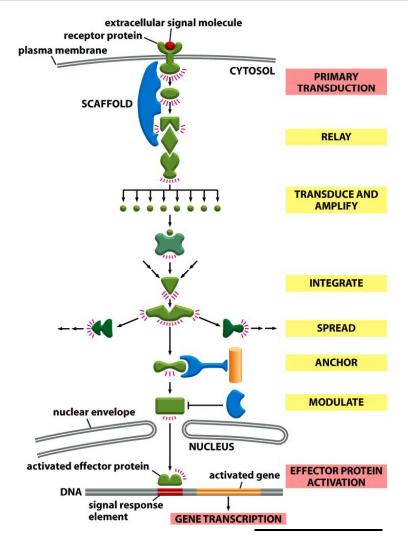


# Adaptation of Sensitivity to Signaling

• Cells can adapt to external stimuli through sensitivity adjustment.

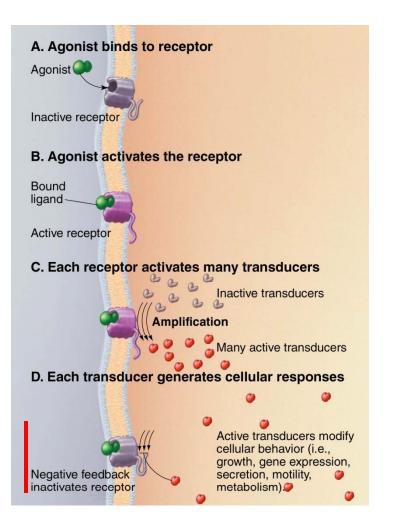


### Overview of cell signaling


- Classification of signaling related proteins
- Receptors
- Signaling protein transducers
- Second messengers

# **Overview of Cell Signaling**

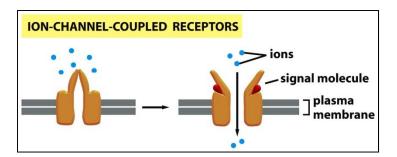
- Cascade of signaling events

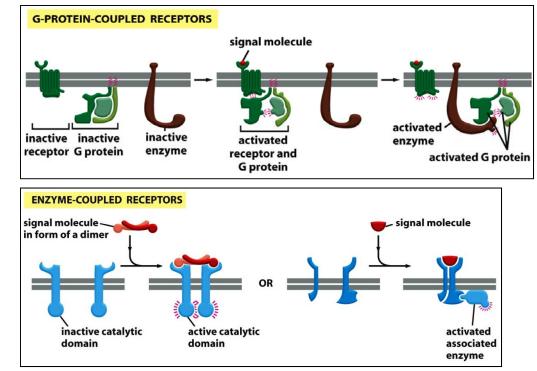

   Receptors
   Signal transducers
   Effector proteins
- Relay, integration, and distribution of signals require transducers.

• Signaling pathways regulate nearly all cellular functions.



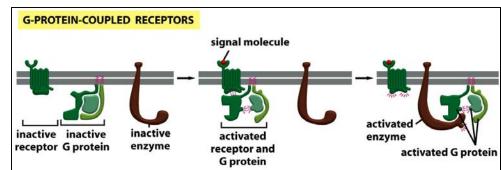
# **Transducers in Signaling**


- Signaling proteins
  - Kinases Phosphatases GTPases Adapters
- Second messengers
  - cAMP, cGMP Lipids Calcium NO (nitrogen monoxide)



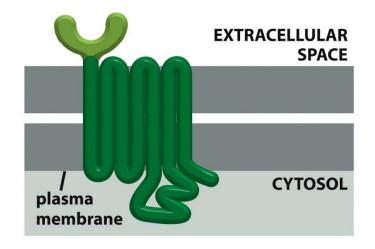

- Overview of cell signaling
- Classification of signaling related proteins
- Receptors
- Signaling protein transducers
- Second messengers

## **Membrane Receptors**


- Most extracellular signal molecules bind to specific membrane receptors.
- Three largest classes of receptors, defining three transduction mechanisms.
- Two common strategies used to transfer signals
  - conformation changes
  - clustering






### G-Protein Coupled Receptors (I)

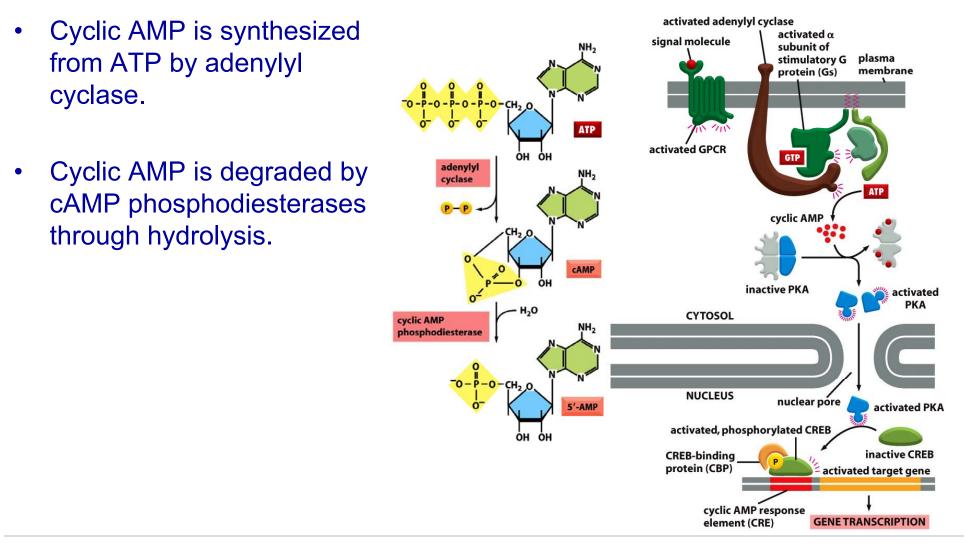
- Signal molecules of GPCR include
  - photons
  - molecules of taste and smell
  - hormones, neurotransmitters, ...
  - proteins, small peptides, etc...



### Function

- Nearly all human senses: sight, smell, taste
  - Behavior and mood regulation
- Regulation of immune system and inflammation
  - Nervous system regulation
- Half of known drugs work through GPCR directly or indirectly

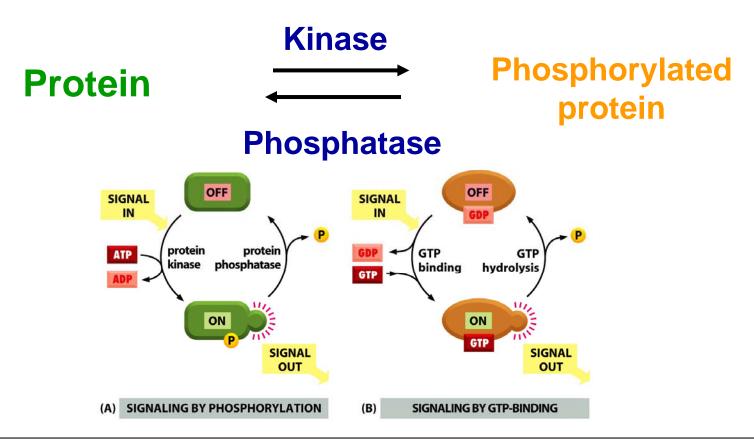



### **Different Trimeric G-Protein Families**

#### Table 15–3 Four Major Families of Trimeric G Proteins\*

| FAMILY | SOME FAMILY<br>MEMBERS      | SUBUNITS THAT<br>MEDIATE ACTION | SOME FUNCTIONS                                                                          |
|--------|-----------------------------|---------------------------------|-----------------------------------------------------------------------------------------|
| I      | Gs                          | α                               | activates adenylyl cyclase; activates Ca <sup>2+</sup> channels                         |
|        | Golf                        | α                               | activates adenylyl cyclase in olfactory sensory neurons                                 |
| II     | Gi                          | α                               | inhibits adenylyl cyclase                                                               |
|        |                             | βγ                              | activates K <sup>+</sup> channels                                                       |
|        | Go                          | βγ                              | activates K <sup>+</sup> channels; inactivates Ca <sup>2+</sup> channels                |
|        | •                           | $\alpha$ and $\beta\gamma$      | activates phospholipase C-β                                                             |
|        | G <sub>t</sub> (transducin) | α                               | activates cyclic GMP phosphodiesterase in vertebrate rod photoreceptors                 |
| III    | Gq                          | α                               | activates phospholipase C-β                                                             |
| IV     | G <sub>12/13</sub>          | α                               | activates Rho family monomeric GTPases (via Rho-GEF) to regulate the actin cytoskeleton |

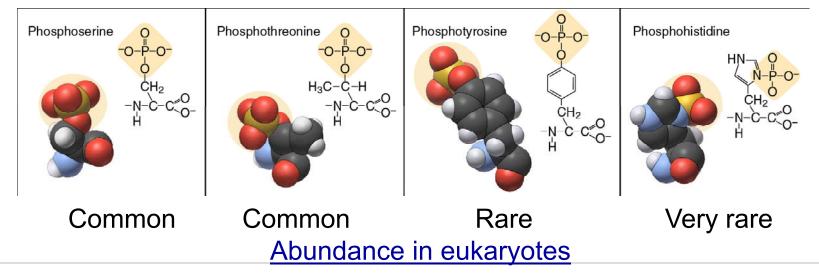
\*Families are determined by amino acid sequence relatedness of the  $\alpha$  subunits. Only selected examples are included. About 20  $\alpha$  subunits and at least 6  $\beta$  subunits and 11  $\gamma$  subunits have been described in humans.


### Example: Regulation of cAMP by G Proteins



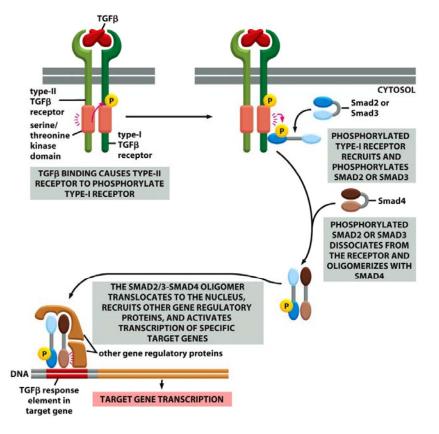
## **Enzyme Coupled Receptors**

- Enzyme coupled receptors: receptor serine/threonine kinases receptor tyrosine kinase cytokine receptors guanylyl cyclase receptors
- Latent gene regulatory pathway receptors Notch receptors Hedgehog receptors TNF receptors Toll-like receptors


# Protein Kinase & Phosphatase (I)



### Presence/absence of a single phosphate group turns on/off a signaling protein


# Protein Kinase & Phosphatase (II)

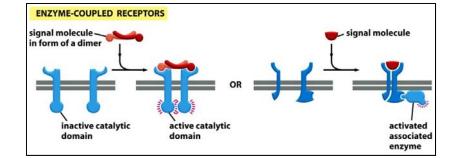
- Normally part of a signaling cascade
- Often serve as signal amplifiers
- Human genomes encodes ~520 kinases and ~150 phosphatases
- Two main types of kinases
  - serine/threonine kinase (>99%)
  - tyrosine kinase

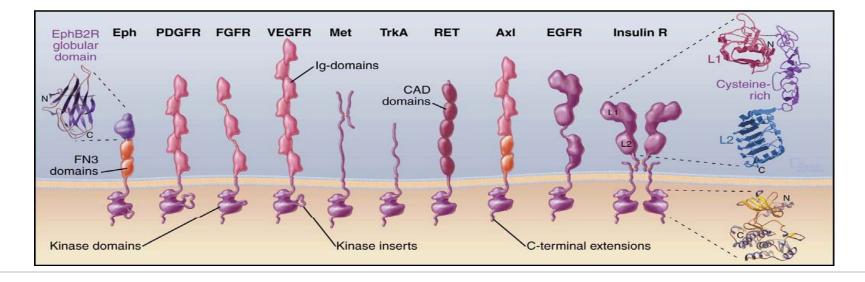


### **Receptor Serine/Threonine Kinases**

- Binds to about 40 human proteins, e.g. TGF-β and bone morphogenetic protein.
- TGF-β acts through receptor serine/threonine kinase and Smads.




• TGF- $\beta$ 


- Embryonic development signaling.
- Inhibits proliferation of most adult cells.
- Stimulate extracellular matrix production
- Regulate cell death in development.
- Regulate tissue repair and immune response in adults.

Smad: Sma in C. elegans & Mad in Drosophila

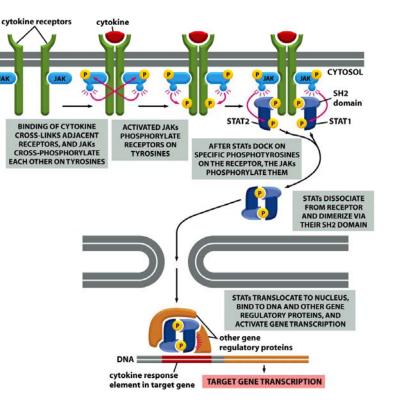
# Receptor Tyrosine Kinase (I)

- Phosphorylate tyrosines on themselves and a small set of intracellular signaling proteins.
- Receptor tyrosine kinase
  - extracellular ligand-binding domain
  - cytoplasmic tyrosine kinase domain
  - single transmembrane helix





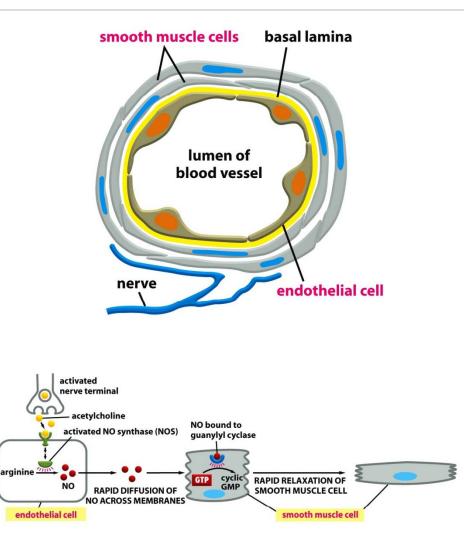
# Receptor Tyrosine Kinase (II)


#### Table 15-4 Some Signal Proteins That Act Via RTKs

| SIGNAL PROTEIN                                       | RECEPTORS                                                         | SOME REPRESENTATIVE RESPONSES                                                                                                                 |
|------------------------------------------------------|-------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------|
| Epidermal growth factor (EGF)                        | EGF receptors                                                     | stimulates cell survival, growth, proliferation, or<br>differentiation of various cell types; acts as inductive<br>signal in development      |
| Insulin                                              | insulin receptor                                                  | stimulates carbohydrate utilization and protein synthesis                                                                                     |
| Insulin-like growth factors (IGF1<br>and IGF2)       | IGF receptor-1                                                    | stimulate cell growth and survival in many cell types                                                                                         |
| Nerve growth factor (NGF)                            | Trk A                                                             | stimulates survival and growth of some neurons                                                                                                |
| Platelet-derived growth factors<br>(PDGF AA, BB, AB) | PDGF receptors ( $\alpha$ and $\beta$ )                           | stimulate survival, growth, proliferation, and migration of various cell types                                                                |
| Macrophage-colony-stimulating<br>factor (MCSF)       | MCSF receptor                                                     | stimulates monocyte/macrophage proliferation and<br>differentiation                                                                           |
| Fibroblast growth factors (FGF1 to FGF24)            | FGF receptors (FGFR1–FGFR4,<br>plus multiple isoforms<br>of each) | stimulate proliferation of various cell types; inhibit<br>differentiation of some precursor cells; act as inductive<br>signals in development |
| Vascular endothelial growth factor<br>(VEGF)         | VEGF receptors                                                    | stimulates angiogenesis                                                                                                                       |
| Ephrins (A and B types)                              | Eph receptors (A and B types)                                     | stimulate angiogenesis; guide cell and axon migration                                                                                         |

Alberts MBoC 5e

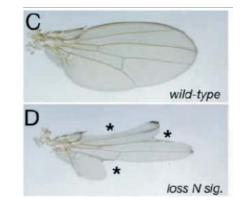
# **Cytokine Receptors**


- Cytokines are polypeptide hormones or growth factors that act as a local mediator in cell-cell communication.
- Immune cells secrete cytokines when pathogens are encountered.
- Cytokines recruit immune cells in response to pathogens.
- Cytokine receptors activate the JAK-STAT signaling pathway.
- JAK-STAT pathway provides a fast track to the nucleus.

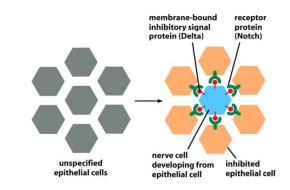


JAK: Janus kinases STAT: signal transducer and activators of transcription

### Intracellular Receptor: Guanylyl Cyclase Receptors


- Soluble guanylyl cyclase is a mammalian NO/CO sensor.
- NO signaling is critical to many physiological processes involving cardiovascular and neuronal systems.
- Related drugs work by blocking the breakdown of cGMP.




# Notch Receptors (I)

- Latent gene regulatory proteins are activated by protein degradation.
- Protein ligand: Delta (fly), LAG-2 (worm); Receptors: Notch, Lin-12 (worm)
- Most widely used in
  - cell fate regulation (development)
  - pattern formation (development)
  - tissue renewal (post-development)
- Main function: lateral inhibition

- Amplify and consolidate molecular differences between adjacent cells during embryonic development



#### Lai, Development, 131:965, 2004



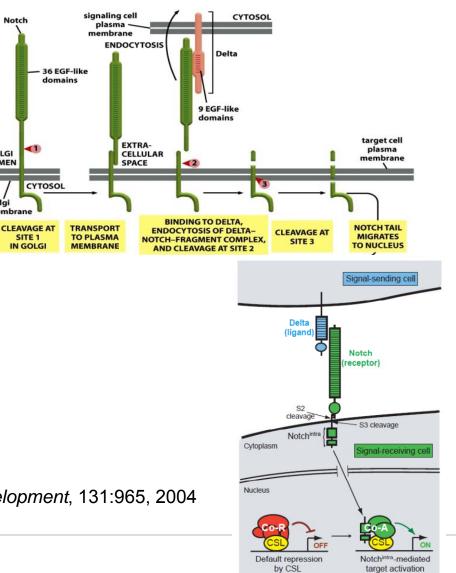
# Notch Receptors (II)

Notch

GOLGI

LUMEN

Golgi


membrane

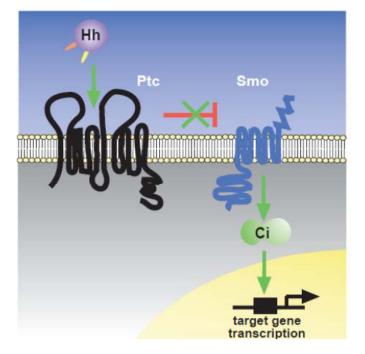
SITE 1

IN GOLGI

- Binding of Delta triggers • cleavage of Notch.
- **Released Notch tail migrates** into the nucleus to convert Rbpsuh protein from a transcriptional repressor into a transcriptional activator.
- Activation of Notch is • irreversible.
- The simplest known pathway • from cell surface to nucleus.

Lai, Development, 131:965, 2004



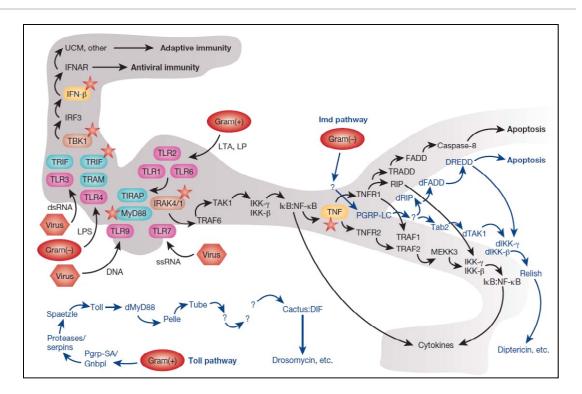

# Hedgehog Receptors

- Protein ligand: Hh; Receptors: Ptc & Smo
- Hh binds and inactivate Ptc, which activates Smo and gene transcription.
- Main functions

- Regulates cellular differentiation in embryonic development

- Maintaining stem cells in postembryonic tissues (tissue renewal)

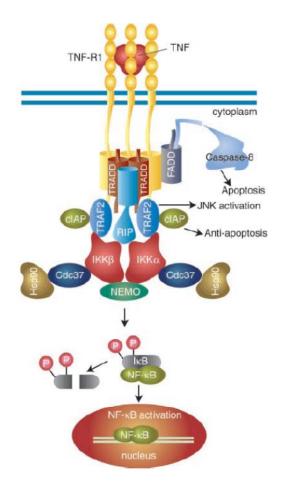
- Mutation of Hh causes developmental defects.
- Mutation of Ptc and Smo causes skin cancer.




Lum & Beachy, Science, 304:1755, 2004

## Toll-like Receptors (TLRs)

- Mammals have TLRs that recognize specific foreign molecules.
- Main function


   To sense and respond to infection
- At the core of our inherited resistance to disease



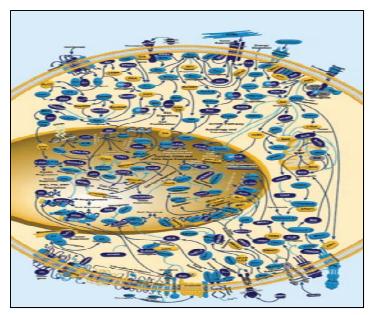
Beutler, Nature, 430:257, 2004

#### Tumor Necrosis Factor (TNF) Receptors

- Binding of TNF with its receptors triggers mutiple signaling pathways.
- Function
  - Triggering apoptosis of tumor cellsMediate inflammatory responseRegulate immune system function
- Inappropriate TNF signaling has been implicated in many human diseases.



Chen et al, Science, 296:1634, 2002.


#### NF-kB Pathway

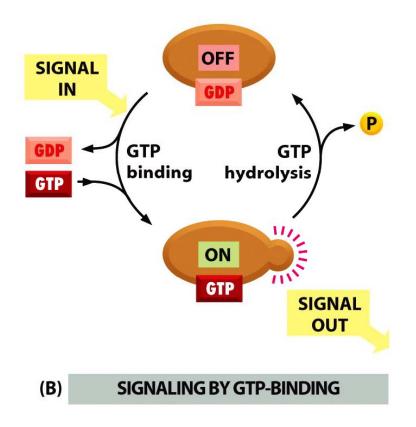
- Activation of Toll-like receptors or TNF receptors triggers a signaling cascade that releases NFkB.
- NFkB proteins regulate transcriptions of hundreds of genes participate in immune responses.
- Excessive or inappropriate inflammation response can cause tissue damage and severe pain.
- Chronic inflammation can lead to cancer.

#### **Challenges in Analyzing Signaling Pathways**

- Hundreds of signaling pathways.
- Pathways frequently branch and converge.
- Positive and negative feedback loops are common.
- Outcomes of signaling pathways can be spatial and temporal dependent.
- Analysis typically uses graph models.

Human cancer pathways

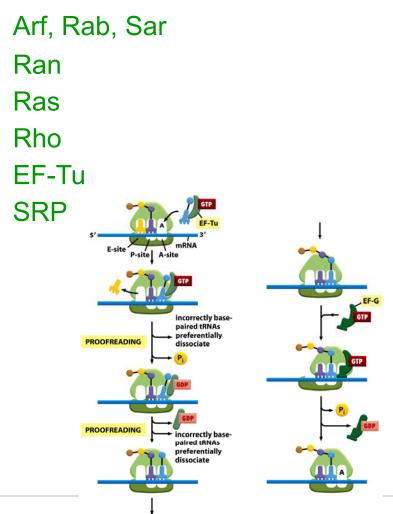



### References

- J. Hancock, Cell Signaling, 3<sup>rd</sup> ed., Oxford University Press, 2010.
- F. Marks et al, Cell Signal Processing, Garland Science, 2008.

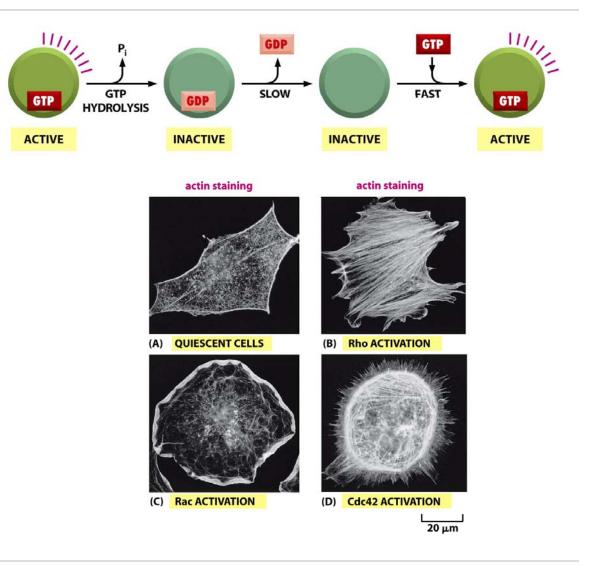
- Overview of cell signaling
- Classification of signaling related proteins
- Receptors
- Signaling protein transducers
- Second messengers

#### **GTP-Binding Proteins**


- Trimeric G-protein & Monomeric small GTPase
- Large family of related proteins
- Evolved from a common ancestor by gene duplication and divergence
- Use GTP binding and hydrolysis to switch between two states of activity



# **Monomeric GTPases**


#### Participate in many cellular activities:

- Membrane traffic
- Nuclear transport
- Signal transduction
- Regulation of the cytoskeleton
- Protein synthesis
- Protein translocation into ER



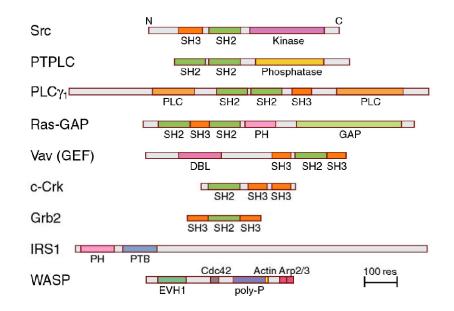
# **Actin Regulation**

 GTPase: Molecule switch; Family of proteins that are activated by GTP binding and inactivated by GTP hydrolysis and phosphate dissociation.



- Rho GTPase: <u>cdc42:</u> its activation triggers actin polymerization and bundling at filopodia.
  - <u>Rho:</u> its activation promotes actin bundling.

<u>Rac:</u> its activation promotes polymerization at the cell periphery.


# Adaptor Domains (I)

- Adaptor domains mediate interactions of proteins with each other and with membrane.
- These domains are compactly folded and incorporated into a variety of proteins.
- Adaptors facilitate the formation of protein complexes and make signal transduction more reliable.

SH1 : tyrosine kinase domain

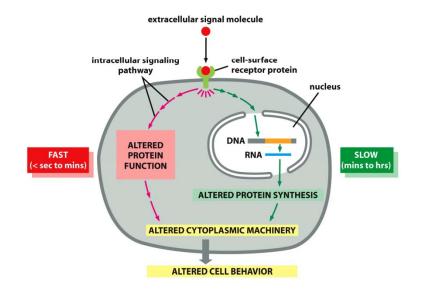
SH2: Src homology 2, binds phosphotyrosine peptides

SH3: Src homology 3 binds polyproline type II helices



# Adaptor Domains (II)

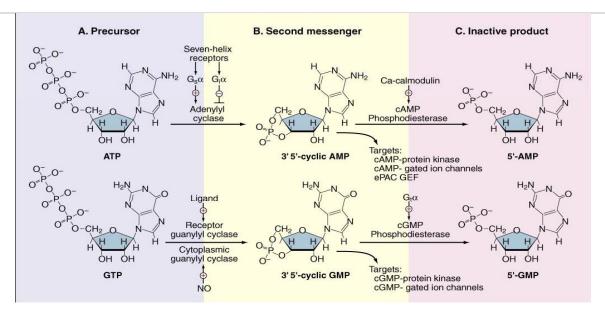
#### Table 25-4


#### ADAPTER DOMAINS

| Domain Name                   | Size (Residues) | Consensus Ligands                              | Example of Proteins with Domain                                |
|-------------------------------|-----------------|------------------------------------------------|----------------------------------------------------------------|
| EH (Eps15 homology)           | 95              | S/T-N-P-F-Ф                                    | Clathrin adapter proteins, synaptojanin I                      |
| EVH1 (Ena-VASP homology)      | 110             | D/E-Ф-P-P-P                                    | WASp, VASP, Ena                                                |
| PH (Pleckstrin homology)      | 100             | PIP <sub>2</sub> , PIP <sub>3</sub>            | Kinases, scaffolds, GEFs, GAPs, PLCδ, dynamin                  |
| PDZ                           | 100             | -х-х-S/Т-х-V-СООН<br>-х-х-Ф-х-Ф-СООН           | Scaffolds for channels and transduction enzymes                |
| PTB (phosphotyrosine binding) | 125             | -Ф-х-N-P-х-рY-                                 | IRS1, Shc scaffold proteins                                    |
| SH2 (Src homology 2)          | 100             | -рҮ-х-х-Ф-                                     | Transduction enzymes and scaffold proteins                     |
| SH3 (Src homology 3)          | 60              | (+) -R/K-x-x-P-x-x-P-<br>(-) -x-P-x-x-P-x-R/K- | Tyrosine kinases, phosphatases, Grb2, PLCγ, spectrin, myosin I |
| WW                            | 38-40           | -P-P-x-Y-                                      | Peptidyl prolyl isomerase, ubiquitin ligase                    |
| 14-3-3                        | 250             | -R-S-X-pS-x-P-                                 | 14-3-3 isoforms                                                |

- Overview of cell signaling
- Classification of signaling related proteins
- Receptors
- Signaling protein transducers
- Second messengers

## Overview of Second Messengers (I)


- Types of second messengers
  - Cyclic nucleotides: cAMP, cGMP
  - Calcium
  - Lipids
  - Nitric oxide
- Small molecules.
- Information encoded by local concentrations.
- Advantages
  - Range (e.g. broadcasting)
  - Response speed (up to ms)
- Second messengers are interrelated.



### **Overview of Second Messengers (II)**

- Production (source)
- Localization
- Target
- Degradation (sink)

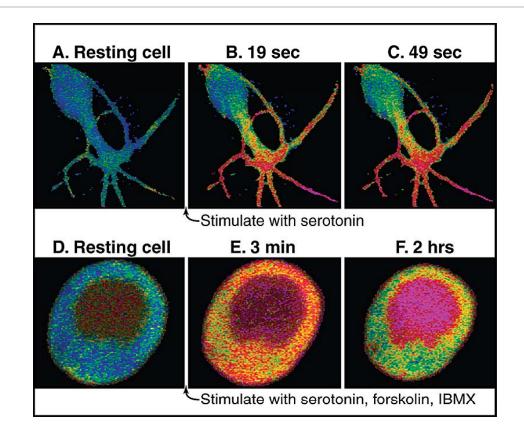
## Cyclic Nucleotide (I)



• Producer:

 $cAMP \rightarrow adenylyl cyclase$  $cGMP \rightarrow guanylyl cyclase$ 

• Degrader:


cAMP phosphodiesterase cGMP phospoodiesterase

# cAMP (I)

- Diffuse rapidly through cytoplasm as in free solution
- May be modulated locally (through upstream Gproteins)
- Concentration in resting cell ~10<sup>-8</sup>M
- Can amplify signal by 100-fold on time scale of ms.
- Targets:
  - kinase
  - cyclic nucleotide-gated ion channels
  - Exchange factors for small GTPases (Rap1, Rap2)

# cAMP (II)

- cAMP regulates PKA
- PKA targets metabolic enzymes, transcription factors and ion channels
- Guanylyl cyclase (cGMP producer) is activated by NO and CO



# **Questions ?**