BME 42-620 Engineering Molecular Cell Biology

Lecture 17:

Gene Expression I: From DNA to RNA

Chapters 5 & 6
Lectures on Gene Expression

- From DNA to RNA (lecture 17)
- From RNA to protein (lecture 18)
- Regulation of gene expression (lecture 19)
- Quantitative analysis and modeling of gene expression (lecture 19)
Some References

Krebs et al, Jones & Bartlett, 2009
Weaver, McGraw-Hill, 2007
Outline

• DNA replication and repair

• Overview of transcription

• RNA

• Transcription Process

• Nuclear export of mRNA
Outline

- DNA replication and repair
 - Overview of transcription
 - RNA
 - Transcription Process
 - Nuclear export of mRNA
Replication and Processing of Genetic Information

- In S phase, cells copy genetic information through DNA replication.

- Cells read and process genetic information through transcription and translation.
Polarity of DNA and RNA

- A nucleotide consists of a base, a five-carbon sugar, and one or more phosphate groups.
- 5' end: the end with the 5' phosphate group
- 3' end: the end with the 3' hydroxyl group
- DNA: A (adenine), T (thymine), G (guanine), C (cytosine)
- RNA: A, U (uracil), G, C
DNA Structure
DNA Replication

- DNA replication must ensure high fidelity in the short-term while allowing genetic variations in the long-term.

- High fidelity of DNA replication:
 - One nucleotide error per 10^9 nucleotides per cell generation.
 \[\Rightarrow \text{Limits the number of essential genes to } \sim 50000. \]
 - One amino acid alteration every 200,000 years

- If we are to model DNA replication in short-term, noise in this process can be largely ignored.

- The high fidelity of DNA replication is achieved using multiple error checking and correction mechanisms.
DNA Damage Repair (I)

- DNA damage can be caused by many factors
 - Environmental factors: heat, radiation, chemicals
 - DNA of each human cell loses 5000 purine (A,G) bases spontaneously every day due to a process called depurination

- Eventually, less than 1 of 1000 of base changes result in permanent mutation thanks to DNA repair.

- Transcription stalls at DNA damages.

- DNA repair is coupled to transcription so that urgently needed DNA sequences get repaired quickly.
DNA Damage Repair (II)

<table>
<thead>
<tr>
<th>NAME</th>
<th>PHENOTYPE</th>
<th>ENZYME OR PROCESS AFFECTED</th>
</tr>
</thead>
<tbody>
<tr>
<td>MSH2, 3, 6, MLH1, PMS2</td>
<td>colon cancer, skin cancer, UV sensitivity, neurological abnormalities</td>
<td>mismatch repair</td>
</tr>
<tr>
<td>Xeroderma pigmentosum (XP) groups A–G</td>
<td>UV sensitivity, skin cancer, leukemia, lymphoma, γ-ray sensitivity, genome instability</td>
<td>nucleotide excision-repair</td>
</tr>
<tr>
<td>XP variant</td>
<td>breast, ovarian, and prostate cancer</td>
<td>translesion synthesis by DNA polymerase ι</td>
</tr>
<tr>
<td>Ataxia telangiectasia (AT)</td>
<td>premature aging, cancer at several sites, genome instability</td>
<td>ATM protein, a protein kinase activated by double-strand breaks</td>
</tr>
<tr>
<td>BRCA2</td>
<td>cancer at several sites, stunted growth, genome instability</td>
<td>repair by homologous recombination</td>
</tr>
<tr>
<td>Werner syndrome</td>
<td>congenital abnormalities, leukemia, genome instability</td>
<td>accessory 3′-exonuclease and DNA helicase</td>
</tr>
<tr>
<td>Bloom syndrome</td>
<td>hypersensitivity to DNA-damaging agents, genome instability</td>
<td>accessory DNA helicase for replication</td>
</tr>
<tr>
<td>Fanconi anemia groups A–G</td>
<td></td>
<td>DNA interstrand cross-link repair</td>
</tr>
<tr>
<td>46 BR patient</td>
<td></td>
<td>DNA ligase I</td>
</tr>
</tbody>
</table>
Outline

• DNA replication and repair

• Overview of transcription

• RNA

• Transcription Process

• Nuclear export of mRNA
The Central Dogma of Molecular Biology

• Gene expression consists of multiple steps that are dynamically and closely regulated.

• RNA plays important roles in regulation of gene expression.

• For many genes, RNA is the end product, which fold in 3D and serves structural, catalytic, and regulatory roles.
Complexity of Genomes

• Genome contains not only protein coding information but also regulatory information that controls when, where, and how genes are expressed.

• Although genomic sequences of many living organisms are known, much less is known about regulation of gene expression.

• It is difficult to decode regulatory information purely based on sequences because information distribution on genome often is not orderly.
 - Example 1. genes encoding proteins that interact closely with each other often locate on different chromosomes.
 - Example 2. adjacent genes may encode proteins that are uncorrelated in the cell.
Outline

• DNA replication and repair
• Overview of transcription
• RNA
• Transcription Process
• Nuclear export of mRNA
Differences Between DNA and RNA

• **DNA**
 - Purine: adenine (A) guanosine (G)
 - Pyrimidines: thymine (T) cytosine (C)

• **RNA**
 - Purine: adenine (A) guanosine (G)
 - Pyrimidines: uracil (U) cytosine (C)

• RNA is single-stranded.

• RNA transcripts are much shorter than DNA.

• RNA can fold into 3D structures.
Different Types of RNA

Table 6–1 Principal Types of RNAs Produced in Cells

<table>
<thead>
<tr>
<th>TYPE OF RNA</th>
<th>FUNCTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>mRNAs</td>
<td>messenger RNAs, code for proteins</td>
</tr>
<tr>
<td>rRNAs</td>
<td>ribosomal RNAs, form the basic structure of the ribosome and catalyze protein synthesis</td>
</tr>
<tr>
<td>tRNAs</td>
<td>transfer RNAs, central to protein synthesis as adaptors between mRNA and amino acids</td>
</tr>
<tr>
<td>snRNAs</td>
<td>small nuclear RNAs, function in a variety of nuclear processes, including the splicing of pre-mRNA</td>
</tr>
<tr>
<td>snoRNAs</td>
<td>small nucleolar RNAs, used to process and chemically modify rRNAs</td>
</tr>
<tr>
<td>scaRNAs</td>
<td>small cajal RNAs, used to modify snoRNAs and snRNAs</td>
</tr>
<tr>
<td>miRNAs</td>
<td>microRNAs, regulate gene expression typically by blocking translation of selective mRNAs</td>
</tr>
<tr>
<td>siRNAs</td>
<td>small interfering RNAs, turn off gene expression by directing degradation of selective mRNAs and the establishment of compact chromatin structures</td>
</tr>
<tr>
<td>Other noncoding RNAs</td>
<td>function in diverse cell processes, including telomere synthesis, X-chromosome inactivation, and the transport of proteins into the ER</td>
</tr>
</tbody>
</table>
Outline

• DNA replication and repair

• Overview of transcription

• RNA

• Transcription Process

• Nuclear export of mRNA
Steps From DNA to RNA

- Transcription
- 5' end capping
- Splicing of pre-mRNA
- 3' end capping
- Nuclear export of mature mRNA
- These steps can occur concurrently.
The Transcription Cycle

- Transcription is performed by RNA polymerase.
- Three steps: initiation, elongation, termination
- Transcription goes from 3' end to 5' end.
- RNA polymerase makes 1 mistake every 10^4 bases.
Transcription Initiation and Termination in Bacteria (I)

- In bacteria, initiation of transcription requires the σ-factor.

- Transcription starts downstream of the promoter.
Transcription Initiation and Termination in Bacteria (II)

- Transcription stops at the terminators, which form a structure that destabilizes polymerase's hold on RNA.

- Direction of transcription is determined by the promoter of each gene.
Three RNA Polymerases in Eukaryotic Cells

• One RNA polymerase in bacteria.

• Three RNA polymerases in eukaryotic cells.

Table 6–2 The Three RNA Polymerases in Eucaryotic Cells

<table>
<thead>
<tr>
<th>TYPE OF POLYMERASE</th>
<th>GENES TRANSCRIBED</th>
</tr>
</thead>
<tbody>
<tr>
<td>RNA polymerase I</td>
<td>5.8S, 18S, and 28S rRNA genes</td>
</tr>
<tr>
<td>RNA polymerase II</td>
<td>all protein-coding genes, plus snoRNA genes, miRNA genes, siRNA genes, and most snRNA genes</td>
</tr>
<tr>
<td>RNA polymerase III</td>
<td>tRNA genes, 5S rRNA genes, some snRNA genes and genes for other small RNAs</td>
</tr>
</tbody>
</table>

The rRNAs are named according to their “S” values, which refer to their rate of sedimentation in an ultracentrifuge. The larger the S value, the larger the rRNA.
RNA polymerase II requires many general transcription factors (TFII’s) to initiate.

Table 6–3 The General Transcription Factors Needed for Transcription Initiation by Eucaryotic RNA Polymerase II

<table>
<thead>
<tr>
<th>NAME</th>
<th>NUMBER OF SUBUNITS</th>
<th>ROLES IN TRANSITION INITIATION</th>
</tr>
</thead>
<tbody>
<tr>
<td>TFIID</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>TBP subunit</td>
<td>1</td>
<td>recognizes TATA box</td>
</tr>
<tr>
<td>TAF subunits</td>
<td>~11</td>
<td>recognizes other DNA sequences near the transcription start point; regulates DNA-binding by TBP</td>
</tr>
<tr>
<td>TFIIB</td>
<td>1</td>
<td>recognizes BRE element in promoters; accurately positions RNA polymerase at the start site of transcription</td>
</tr>
<tr>
<td>TFIIF</td>
<td>3</td>
<td>stabilizes RNA polymerase interaction with TBP and TFIIB; helps attract TFIIE and TFIIH</td>
</tr>
<tr>
<td>TFIIE</td>
<td>2</td>
<td>attracts and regulates TFIIF</td>
</tr>
<tr>
<td>TFIIH</td>
<td>9</td>
<td>unwinds DNA at the transcription start point, phosphorylates Ser5 of the RNA polymerase CTD; releases RNA polymerase from the promoter</td>
</tr>
</tbody>
</table>

TFIID is composed of TBP and ~11 additional subunits called TAFs (TBP-associated factors); CTD, C-terminal domain.

UTP, ATP, CTP, GTP: ribonucleoside triphosphate
Transcription Initiation and Termination in Eukaryotic Cells (II)

- RNA polymerase II also requires activator, mediator, and chromatin-modifying proteins.

- >100 protein subunits must be assembled to initiate transcription.

- Why:
 - Must deal with nucleosomes and higher order DNA structures.
 - Advanced regulatory mechanisms.

Alberts MBoc 5e
Transcription Start and Stop Signals

- For RNA polymerase II
 - TATA box
 - Initiators

- Terminator sequences are not always well-specified.

- These signals are heterogeneous in different sequences.
Transcription Elongation

- Elongation phase begins after around 10 bases are synthesized.

- RNA polymerase conducts multiple processes simultaneously
 - Unwinds DNA in front
 - Reanneals DNA behind
 - Disassociate growing RNA chain from template
 - Perform proofreading

- Elongation factors (proteins) assist movement of RNA polymerases and prevent them from falling off prematurely.
RNA Capping (I)

- 5' end capping → splicing → 3' end capping.

- Main purposes of capping
 - To identify and differentiate mRNA from other RNA's.
 - To protect mRNA from degradation.
 - To check whether the transcriptions is complete.

CstF: cleavage stimulation factor
CPSF: cleavage and polyadenylation specificity factor
RNA Capping (II)

procaryotic mRNA

5’ \[PPP\] 3’

5’ coding sequence

protein α

5’ noncoding sequence

protein β

protein γ

eucaryotic mRNA

[+] 5’ cap

5’ G \[PPP\] 3’

5’ coding sequence

protein

5’ noncoding sequence

AAAAA\(_{150-250}\) 3’
RNA Splicing in Eukaryotic Cells (I)

- RNA splicing removes introns sequences from newly transcribed pre-mRNA.

- Splicing is performed by RNA molecules.

- snRNA (small nuclear RNA) \(\downarrow \)
 snRNP (small nuclear ribonucleoproteins) \(\downarrow \)
 spliceosome
Alternative Splicing

- Alternative splicing generates different protein isoforms.
- It significantly increases the number of proteins encoded by the genome.
RNA Splicing in Eukaryotic Cells (II)

Primary splicing mechanism

→ A: adenine
→ 5’ splice site: U1 snRNP
→ Branch site: U2 snRNP
→ 3’ splice site: U6 snRNP

Secondary splicing mechanism in complex eukaryotic cells
Outline

• DNA replication and repair

• Overview of transcription

• RNA

• Transcription Process

• Nuclear export of mRNA
Nuclear Export of RNA

- Export by forming a mRNA-protein complex.
- Nucleus restricted proteins need to unbind.
- Export receptors are re-imported and reused.

Erkmann & Kutay, Nuclear export of mRNA
Exp. Cell Res. 296:12, 2004

CBC: cap binding complex
hnRNP: heterogeneous ribonucleoprotein
EJC: exon junction complex
SR: serine-arginine rich protein
Questions ?