BME 42-620 Engineering Molecular Cell Biology

Lecture 14:

Review: Polymer Mechanics

Modeling Biochemical Reactions (I)

Project Assignment 02

Review: Project Assignment 01

- Review: polymer mechanics; Problem set 02
- Modeling biochemical reactions
- Project assignment 02
- Review: project assignment 01

- Review: polymer mechanics; Problem set 02
- Modeling biochemical reactions
- Project assignment 02
- Review: project assignment 01

Basic Mechanical Properties of Cytoskeletal Filaments

- Bending rigidity
- Viscous drag coefficient
- Buckling force
- Persistence length

Buckling Force

 Euler's force: buckling force on both ends

$$F_c = \pi^2 \frac{EI}{L^2}$$

 Example: microtubule buckling force

EI=30 ×10⁻²⁴N·m². L = 10
$$\mu$$
m

$$Fc=6.1pN$$

$$F_c = \alpha^2 \frac{EI}{L^2}$$

Persistence Length (I)

Persistence length is defined as the characteristic distance determined in

$$\langle cos[\theta(s) - \theta(0)] \rangle = exp\left(-\frac{s}{2L_p}\right)$$

 Persistence length is proportional to the bending rigidity and inversely proportional to thermal energy.

$$L_p = \frac{EI}{kT}$$

Persistence Length (II)

- Persistence length of cellular filaments
 - Actin: 15 μm
 - Microtubule: 6 mm
 - Keratin intermediate filament: ~ 1 μm
 - Coiled coil: 100-200 nm
 - DNA: 50 nm

Cytoskeletal Filaments in vivo

- Cytoskeletal filaments
 - Highly dynamic in vivo.
 - Function in networks.
 - Function under tight regulation.
 - Crosstalk between different filaments.
- Current research focuses on understanding polymer mechanics in vivo.

T. Wittmann et al, *J. Cell Biol.*, 161:845, 2003.

Calculation of Diffusion Coefficient

Einstein-Smoluchowski Relation

$$v_{d} = \frac{1}{2}a\tau = \frac{1}{2}\frac{F_{x}}{m}\tau$$

$$f = \frac{F_{x}}{v_{d}} = \frac{2m}{\tau} = \frac{2m\frac{\delta^{2}}{\tau^{2}}}{\frac{\delta^{2}}{\tau}} = \frac{mv_{x}^{2}}{D} = \frac{kT}{D}$$

$$D = \frac{kT}{f}$$
 f: viscous drag coefficient

 Stokes' relation: the viscous drag coefficient of a sphere moving in an unbounded fluid

$$f = 6\pi\eta r$$
 η : viscousity r: radius

An example of D calculation

Calculation of diffusion coefficient

$$D = \frac{kT}{6\pi\eta r}$$

- $k=1.381\times10^{-23}$ J/k= 1.381×10^{-17} N· μ m/k
- T = 273.15 + 25
- η =0.8904mPa·s=0.8904 ×10⁻³ ×10⁻¹²N· μ m⁻²·s
- r= 500nm=0.5µm
- D=0.5 μ m²/s

- Review: polymer mechanics; Problem set 02
- Modeling biochemical reactions
- Project assignment 02
- Review: project assignment 01

Overview

- In general, there are two approaches
 - Classical approach
 - Contemporary approach
- The classical approach describes the steady state of biochemical reactions.
- Contemporary approach can also describes the dynamics of biochemical reactions.

Modeling First Order Reactions (I)

First order reactions involves one reactant (R).

$$R \rightarrow P$$

- Two examples
 - → Protein conformation change
 - → Disassociation of a molecular complex

Modeling First Order Reactions (II)

Forward reaction model

Forward:
$$\frac{d[P]}{dt} = -\frac{d[R]}{dt} = k_{+}[R]$$

Backward reaction model

Backward:
$$\frac{d[R]}{dt} = -\frac{d[P]}{dt} = k_{-}[P]$$

Putting together

$$\frac{d[R]}{dt} = -k_{+}[R] + k_{-}[P]$$

$$\frac{d[P]}{dt} = k_{+}[R] - k_{-}[P]$$

Modeling First Order Reactions (III)

Determination of equilibrium state

$$R \xrightarrow{k_{+}} P$$

$$k_{-} = \frac{1}{k_{-}} \begin{bmatrix} P_{eq} \end{bmatrix} = k_{-} \begin{bmatrix} P_{eq} \end{bmatrix}$$

$$K_{eq} = \frac{1}{k_{-}} \begin{bmatrix} P_{eq} \end{bmatrix} = \frac{k_{+}}{k_{-}}$$

Classic Approach to Determine 1st Order Rate Constant

 First order rate constant can be measured from reaction half-time.

$$\frac{d[R]}{dt} = -k_{+}[R]$$

$$[R]_{t} = [R]_{0} e^{-k_{+}t}$$

$$\frac{1}{2}[R]_{0} = [R]_{0} e^{-k_{+}t_{1/2}}$$

$$k_{+}t_{1/2} = \ln 2 = 0.6931$$

Modeling Second Order Reactions (I)

- Second order reactions involves two reactants (A,B).
- A second order molecular binding reaction

$$A + B \rightleftharpoons [AB]$$

• Reaction rate model $Forward: \frac{d[P]}{dt} = k_{+}[A][B]$ $Backward: \frac{d[A]}{dt} = \frac{d[B]}{dt} = k_{-}[AB]$ $K_{eq} = \frac{k_{+}}{k_{-}} = \frac{\begin{bmatrix} AB_{eq} \end{bmatrix}}{\begin{bmatrix} A_{ea} \end{bmatrix} \begin{bmatrix} B_{ea} \end{bmatrix}}$

- Review: polymer mechanics; Problem set 02
- Modeling biochemical reactions
- Project assignment 02
- Review: project assignment 01

Basic Concept of Single Particle Simulation

- Initialization: Set the original position x(0)
- Update: calculate the displacement at each time point

$$x(1) = x(0) + \Delta x(0)$$

 $x(2) = x(1) + \Delta x(1)$

MATLAB function for linear regression: <u>robustfit</u>

Numerical Solution of PDE (I)

- Basic elements of a PDE
 - The equation that the unknown function of multiple variables satisfies
 - Initial condition: initial spatial profile of the function
 - Boundary condition: boundary constraints

Example

$$\frac{\partial C}{\partial t} = D \frac{\partial^2 C}{\partial x^2} \qquad -\frac{L}{2} \le x \le \frac{L}{2} \qquad 0 \le t \le \infty$$

$$B.C. \left. \frac{\partial C}{\partial x} \right|_{x = -\frac{L}{2}} = \frac{\partial C}{\partial x} \bigg|_{x = \frac{L}{2}} = 0$$

$$I.C. \left. C(x, t) \right|_{t = 0} = C(x, 0) = \Phi(x)$$

B.C.
$$\frac{\partial C}{\partial x}\Big|_{x=-\frac{L}{2}} = \frac{\partial C}{\partial x}\Big|_{x=\frac{L}{2}} = 0$$

I.C.
$$C(x,t)\Big|_{t=0} = C(x,0) = \Phi(x)$$

Numerical Solution of PDE (II)

Numerical solution of PDE

$$\left. \frac{\partial^2 C}{\partial x^2} \right|_{x=j \cdot \Delta x; t=n \cdot \Delta t} \approx \frac{1}{\left(\Delta x\right)^2} \left\{ c_{j+1}^n - 2c_j^n + c_{j-1}^n \right\} = \frac{1}{\Delta x} \left\{ \frac{c_{j+1}^n - c_j^n}{\Delta x} - \frac{c_j^n - c_{j-1}^n}{\Delta x} \right\}$$

Outline of the program

```
for j=1:M c(j,1)=\dots \text{ % this needs to be set according to initial condition;} end for \ n=1:N for \ j=2:(M-1) c(j,n+1)=c(j,n)+D \text{ * deltaT / deltaX / deltaX * }(c(j+1,n)\dots -2*c(j,n)+c(j-1,n)); end c(1,n+1)=c(2,n+1); c(M,n+1)=c(M-1,n+1);
```

- Review: polymer mechanics; Problem set 02
- Modeling biochemical reactions
- Project assignment 02
- Review: project assignment 01