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Basic Mechanical Properties of Cytoskeletal Filaments

Bending rigidity

Viscous drag coefficient

Buckling force

Persistence length



Buckling Force

« Euler's force: buckling force
on both ends

- Example: microtubule buckling * A_ T
force o
EI=30 x10N-m2. L = 10 um \ oy

Fc=6.1pN

E I (E) m (x0, ¥o)

FC:a2F



Persistence Length (I)

» Persistence length is defined as the characteristic
distance determined Iin

<Cos[e(s)—9(0)]>:exp[_2;]

* Persistence length is proportional to the bending rigidity
and inversely proportional to thermal energy.

_El

| = —
KT



Persistence Length (Il)

» Persistence length of cellular filaments

- Actin: 15 um
- Microtubule: 6 mm
- Keratin intermediate filament: ~ 1 um

- Coiled coil: 100-200 nm
- DNA: 50 nm



Cytoskeletal Filaments in vivo

« Cytoskeletal filaments

- Highly dynamic in vivo.

- Function in networks.

Video 1
(Figure 1A)

- Function under tight regulation.

Microtubules in a PtK1 cell at the

. . edge of an epithelial cell island.
- Crosstalk between different filaments. Few microtubules rapidly

grow into nascent protrusions.

» Current research focuses on e

understanding polymer mechanics in
VIVO.

T. Wittmann et al, J. Cell Biol., 161:845, 2003.



Calculation of Diffusion Coefficient

* Einstein-Smoluchowski Relation

Vd:laleif ¢ _ X_2m_2mr_2_mvf_kT
2 2m _Vd T 5_2 D D
KT i ..
D=— f. viscous drag coefficient

« Stokes' relation: the viscous drag coefficient of a
sphere moving in an unbounded fluid

f =6zpr  m: viscousity
r: radius



An example of D calculation

Calculation of diffusion coefficient

D - KT
6nr

k=1.381x1023J/k=1.381 x10-7" N-um/k
T=273.15+25

n=0.8904mPa-s=0.8904 x10-3 x10-12N-pm-2-s
r=500nm=0.5um

D=0.5 um?/s
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Overview

In general, there are two approaches

- Classical approach
- Contemporary approach

The classical approach describes the steady state of
biochemical reactions.

Contemporary approach can also describes the
dynamics of biochemical reactions.
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Modeling First Order Reactions (I)

 First order reactions involves one reactant (R).

R—>P

 Two examples
- Protein conformation change

—> Disassociation of a molecular complex
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Modeling First Order Reactions (ll)

* Forward reaction model

Forward :

« Backward reaction model

Backward :

* Putting together
dR|
dt
d[P]

dt

8w
a7 __ole]_,
dt dt )

=k [R]+k [P]

k. [R]-k [P]
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Modeling First Order Reactions (lIl)

* Determination of equilibrium state

, K [ReaJ=k [ Par

R==P :

A L 1
R

— eq
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Classic Approach to Determine 15t Order Rate Constant

First order rate constant can be measured from
reaction half-time.

I [R]

[R], =[R],e™

S IR], =[R], e

k.t , =In2=0.6931
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Modeling Second Order Reactions (I)

« Second order reactions involves two reactants (A,B).

* A second order molecular binding reaction
A+B = [AB]

 Reaction rate model d[P]

Forward : - k,[A][B]
d[A]_d[B]_, 1ug
dt dt )

K = k+ _ [ABeq]

Tk (A (B

Backward :
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Basic Concept of Single Particle Simulation

* Initialization: Set the original position x(0)

« Update: calculate the displacement at each time
point

x(1)

x(2)

x(0) + Ax(0)
x(1) + Ax(1)

 MATLAB function for linear regression: robustfit
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Numerical Solution of PDE (I)

 Basic elements of a PDE

- The equation that the unknown function of multiple
variables satisfies

- Initial condition: initial spatial profile of the function

- Boundary condition: boundary constraints

2
o€ _pot Lol oct<n
ot ox* 2 2
« Example

Bc. & &

OX |, L OX|,_L

2 2

1.C. C(x,t)‘t:0 =C(x,0)=@(x)




Numerical Solution of PDE (Il)

 Numerical solution of PDE

? ¢ —¢" c¢"=¢"
I O e
aX X=j-Ax;t=n-At (AX) AX AX AX

« QOutline of the program

for j=1: M

c(j, 1) =... % this needs to be set according to initial condition;
end
forn=1:N

for j=2:(M-1)

c(j, n+1) =c(j,n) + D * deltaT / deltaX / deltaX * (c(j+1, n) ...

-2*c¢(j,n)+c(j—1,n));

end
c(1, n+1) = c(2, n+1);
c(M, n+1) = ¢(M-1, n+1);

end

21



Outline

* Review: project assignment 01

22



