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Course Administration Notes (I)

• Correction: Midterm exam: October 27, 2011; Take-home exam; 
Instructions handed out at the end of the class.

• Midterm exam format:

1) conceptual and factual questions based on lectures and the textbook;1) conceptual and factual questions based on lectures and the textbook; 
2) a literature-based research project;
3) Due October 31 Monday 12:00Noon at Mellon Institute 403; 
4) Regular lectures will continue as scheduled. 
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• Overview of molecular motors• Overview of molecular motors

• The myosin superfamily; Myosin motilityy y y y

• The kinesin superfamily; Kinesin motility

• The dynein family; Dynein motility

• Mechanical properties of cytoskeletal polymers
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Overview of Molecular Motors

• Myosin walks on actin filaments.

• Kinesin and dynein walks on
microtubulemicrotubule.

• Motor (head) domainMotor (head) domain
- Produces force and motion

• Tail domain
- Adapts to different cargoes
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Vale RD, Cell, 112:467,2003



Motor Behavior Parameters

• Parameters that characterizing motor behaviors
- processivity: run-length, number of steps
- step size
- stall force

• Myosin is nonprocessive.

• Kinesin and dynein are both processive. Processivity ofKinesin and dynein are both processive. Processivity of 
dynein is weaker. 

• Motors walk nano meter scale steps of specific lengths• Motors walk nano-meter scale steps of specific lengths. 

• Stall force is on the pico-Newton level.
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Relations Between Molecular Motors and 
Cytoskeleton PolymersCytoskeleton Polymers

• Interactions between motors and cytoskeletal polymers are
dynamic and complexdynamic and complex.

• Cytoskeletal polymers provide dynamic tracks for molecular• Cytoskeletal polymers provide dynamic tracks for molecular
motors to walk on.

• Molecular motors active interacts with cytoskeletal polymers. 
For example, p ,

- Molecular motors transport cytoskeletal polymers, e.g. in neurons.
- Molecular motors, e.g. MCAK, regulate cytoskeletal dynamics. 
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Example: Active Transport of Neurofilaments

N. Hirokawa, J. Cell Biol. 94:129, 1982
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Wang, L. & Brown, A. (2010). A hereditary spastic
paraplegia mutation in kinesin-1A/KIF5A disrupts
neurofilament transport. Molecular Neurodegeneration, 5:52
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Myosin Family
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Example: Structure of Head of Myosin-II

• Muscle myosin (Myosin II): 2 heavy chains, 2 light chains

• Light chain stabilizes the heavy chain α-helix.
ELC: essential light chain- ELC: essential light chain

- RLC: regulatory light chain
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Protein Analysis Using Gel Electrophoresis

• Proteins can be separated based on their 
molecular weights and analyzed using gel g y g g
electrophoresis

• Gels (e g polyacrylamide-gel) are used toGels (e.g. polyacrylamide gel) are used to 
generate a viscous matrix through which 
protein molecules move. 

• Ionic detergent such as SDS (sodium 
dodecyl sulfate) binds to hydrophobic 
regions of proteins so that they unfold andregions of proteins so that they unfold and 
negatively charged. 

• SDS PAGE: SDS polyacrylamide gel
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• SDS-PAGE: SDS polyacrylamide-gel 
electrophoresis



Identification of Heavy Chain & Light Chain
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Mechanical Parameters of Myosiny
• Velocity

- Varies substantially between different familiesy
Myosin II: 6000 nm/sec
Myosin V: 200 nm/sec

• Force
- Ranging between 1~10 pN

• Step
- Myosin II: 5 nm
- Myosin V: 36 nm

• Run-length
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Run length
- up to several hundred nm
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Kinesin Families
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Structure of Different Kinesin Families
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Vale RD, Cell, 112:467,2003 



Mechanical Parameters of Kinesin

• Velocity
typically 1 μm/sec- typically ~ 1 μm/sec

• Stall forceStall force
- up to 7 pN

• Step
- 8nm (size of tubulin heterodimer)

• Run length
- typically ~1 μm
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Kinesin and Myosin are Structurally Similar

• Kinesin head is less than half of 
the size of a myosin headthe size of a myosin head.

• Kinesin and myosin lack similarity 
in amino acid sequence. 

• Kinesin head is folded in a wayKinesin head is folded in a way 
similar to the ATP binding core of 
the myosin head. 
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Dynein

• Two classes
axonemal dynein: cilia and flagella- axonemal dynein: cilia and flagella

- cytoplasmic dynein

• Subunits
- DLC
- DLIC
- DIC
- DHC
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Axonemal and Cytoplasmic Dynein

Vale RD, Cell, 112:467,2003
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Dynein: Basic Parameters

• Function in vivo requires dynactin
Schroer TA, Dynactin, Annu. Rev. Cell Dev. Biol., 

• Velocity
axonemal: can be up to 7 μm/sec

20:759-79, 2004

p μ
cytoplasmic: typically ~ 1 μm/sec

• Stall force
up to 7 pN

Adapted from Schliwa & 
Woehlke, Nature, 422:759, 
2003

• Step: multiples of 8nm
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Dynein: Processivity

• Processivity of dynein is relatively 
poorpoor. 

• Dynein can undergo lateral and y g
backward motion on microtubule.

Gennerich, A., Carter, A.P., Reck-Peterson, S.L. and Vale, R.D. (2007) 
F i d d bidi ti l t i f t l i D i C ll 131 952
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Force-induced bidirectional stepping of cytoplasmic Dynein. Cell 131: 952. 



The Rotating Crossbridge Model

• Motors cycle through attached 
and detached states.and detached states.

• Motors undergo amplified 
conformational change duringconformational change during 
attached state. 

Motors undergo conformational• Motors undergo conformational 
recovery during detached 
state. 
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Jonathon Howard, Mechanics of Motor Proteins 
and the Cytoskeleton, Sinauer Associates, 2001
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Polymer Mechanics (I)

• Rationale: characterizing mechanical properties of
individual filaments as a starting point for understandingindividual filaments as a starting point for understanding
mechanical properties of tissues and organs.

• Polymer mechanics is an established research field. 
- A classic treatment: M. Doi & S.F. Edwards, The theory of polymer 
dynamics Oxford University Press 1986dynamics, Oxford University Press, 1986.

• Investigating the mechanics of biopolymers in cells is a
very active research field.
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Polymer Mechanics

• We will take a simplified approach here. 

• Theory of elasticity holds at the scale of single filaments. 

• Cytoskeleton polymers are modeled as thin and slender 
beams. 
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Basic Properties

• Bending rigidityg g y

• Drag coefficient

• Buckling force

• Persistence length
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Bending Rigidity
• Basic equation 1M EI

R


: Radius of curvature
: Torque; bending moment

R

R
M

: Young's modulus
:  second moment of inertia

: bending (flexural) rigidity

E
I
EI

• Bending rigidity of cytoskeletal filaments is generally 
independent of bending direction since cytoskeletal
filaments have approximately circular or helical symmetry.
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filaments have approximately circular or helical symmetry. 



Cantilever Beam Under Small-Angle Bending

• Deflection
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Mechanics of Materials 7th ed J M Gere & B J Goodno 2008
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Mechanics of Materials, 7th ed., J. M. Gere & B. J. Goodno, 2008



Examples: cantilever beam modelsp
• Glass cantilever beam

r = 0.25μm, L = 100 μmμ , μ
E=70 GPa, I=(/4)r4=310-27

k=0.64 pN/nm

• Microtubule
EI=30 10-24N·m2. L = 10 μm
k = 0.00009 pN/nm

• Coiled coil
EI=400 10-30N·m2. L = 8 nm
k = 2.34 pN/nm

32



Questions ?
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