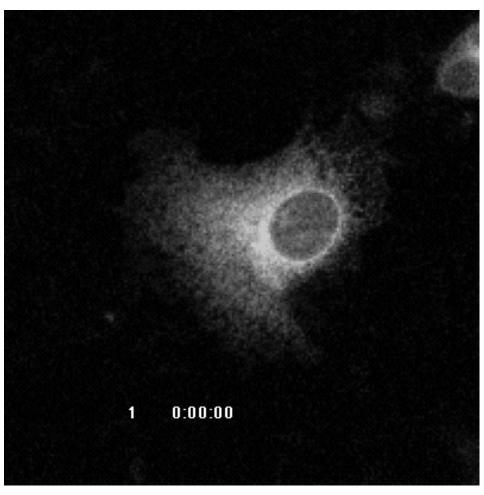
BME 42-620 Engineering Molecular Cell Biology

Lecture 08:

Review: Basics of the Diffusion Theory

The Cytoskeleton (I)


Outline

- Background: FRAP & SPT
- Review: microscopic diffusion theory
- Review: macroscopic diffusion theory
- An overview of the cytoskeleton
- Actin and its associated proteins

Outline

- Background: FRAP & SPT
- Review: microscopic diffusion theory
- Review: macroscopic diffusion theory
- An overview of the cytoskeleton
- Actin and its associated proteins

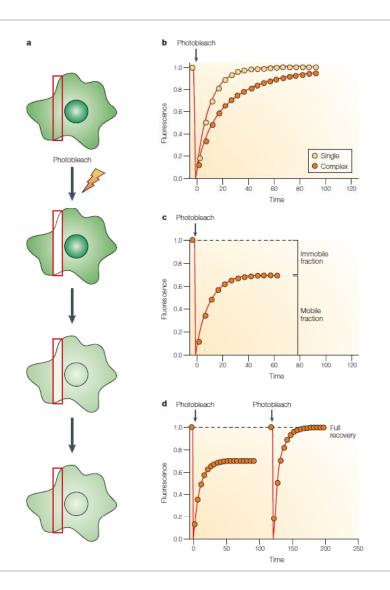
Fluorescence Microscopy of Cell Dynamics

http://lippincottschwartzlab.nichd.nih.gov/video/classic/VSVGrelease.mov

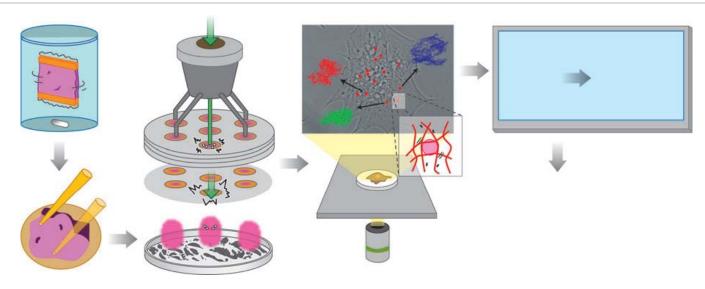
Two Frequently Used Methods to Determine Diffusion Coefficient

Method 1: Fluorescence recovery after photobleaching

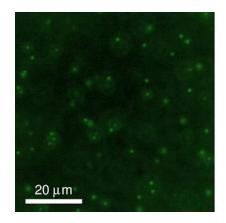
Method 2: Single particle tracking


Fluorescence Recovery After Photobleaching (FRAP)

- FRAP provides a convenient approach to visualize diffusion.
- Diffusion coefficient can be estimated from FRAP.

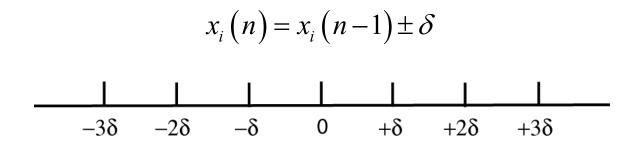

$$D = \frac{w^2}{4t^{1/2}}$$

w: radius of a Gaussian profile bleaching beam $t^{1/2}$: half time of fluorescence recovery


- 1) D. Axelrod, D.E. Koppel, J. Schlessinger, E. Elson, and W.W. Webb. Mobility Measurement by Analysis of Fluorescence Photobleaching Recovery Kinetics. Biophys. J. 1976; 16(9):1055-1069.
- J. Lippincott-Schwartz, N. Altan-Bonnet, G. H. Patterson, Photobleaching and photoactivation: following protein dynamics in living cells. Nature Cell Biology, 2003 Sep;Suppl:S7-14.

Single Particle Tracking (SPT)

D. Wirtz, Particle-tracking microrheology of living cells, *Ann. Rev. Biophys.* 38:301-326, 2009.


http://web.mit.edu/savin/Public/.Tutorial_v1.2/Introduction.html

Outline

- Background: FRAP & SPT
- Review: microscopic diffusion theory
- Review: macroscopic diffusion theory
- An overview of the cytoskeleton
- Actin and its associated proteins

1D Random Walk in Solution (I)

- Assumptions:
 - (1) A particle *i* has equal probabilities to walk to the left and to the right.
 - (2) Particle movement at consecutive time points are independent.
 - (3) Movement of different particles are independent.
 - (4) Each particle moves at a average step size of $\delta = v_x \cdot \tau$

1D Random Walk in Solution (II)

- Property 1: The mean position of an ensemble of particles undergoing random walk remains at the origin.
- The same holds for a single particle over a sufficiently long period of time (ergodicity).

$$x_{i}(n) = x_{i}(n-1) \pm \delta$$

$$-3\delta -2\delta -\delta 0 +\delta +2\delta +3\delta$$

$$\langle x(n) \rangle = \frac{1}{N} \sum_{i=1}^{N} x_{i}(n) = \frac{1}{N} \sum_{i=1}^{N} \left[x_{i}(n-1) \pm \delta \right]$$

$$= \frac{1}{N} \sum_{i=1}^{N} x_{i}(n-1) = \langle x(n-1) \rangle$$

1D Random Walk in Solution (III)

- Property 2: The mean square displacement of an ensemble of particles undergoing random walk increases linearly w.r.t. time.
- Again, the same holds for a single particle.

$$\langle x^{2}(n)\rangle = \frac{1}{N} \sum_{i=1}^{N} x_{i}^{2}(n) = \frac{1}{N} \sum_{i=1}^{N} \left[x_{i}^{2}(n-1) \pm 2\delta x_{i}(n-1) + \delta^{2} \right]$$
$$= \langle x^{2}(n-1)\rangle + \delta^{2}$$

$$\langle x^2(n)\rangle = n\delta^2 = \frac{t}{\tau}\delta^2 = 2Dt$$
 $\langle r^2(n)\rangle = \langle x^2(n) + y^2(n)\rangle = 4Dt$

$$\langle r^2(n)\rangle = \langle x^2(n) + y^2(n) + z^2(n)\rangle = 6Dt$$

$$D = \frac{\delta^2}{2\tau} = \frac{V_x^2 \tau}{2}$$

1D Random Walk in Solution (IV)

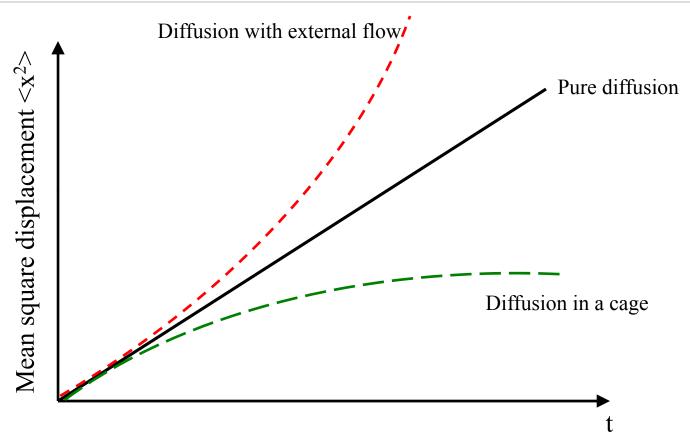
Property 3: The displacement of a particle follows a normal distribution.

$$p(k;n) = \frac{n!}{k!(n-k)!} \frac{1}{2^k} \frac{1}{2^{n-k}}$$

$$p(k) = \frac{1}{\sqrt{2\pi\sigma^2}} e^{-\frac{(k-\mu)^2}{2\sigma^2}}$$
 where $\sigma^2 = \frac{n}{4}$ and $\mu = \frac{n}{2}$

$$x(n) = [k - (n-k)]\delta = (2k-n)\delta$$
 $\langle x(n) \rangle = (2\langle k \rangle - n)\delta = 0$

$$\langle x^2(n)\rangle = (4\langle k^2\rangle - 4\langle k\rangle n + n^2)\delta^2 = (n^2 + n - 2n^2 + n^2)\delta^2 = n\delta^2$$

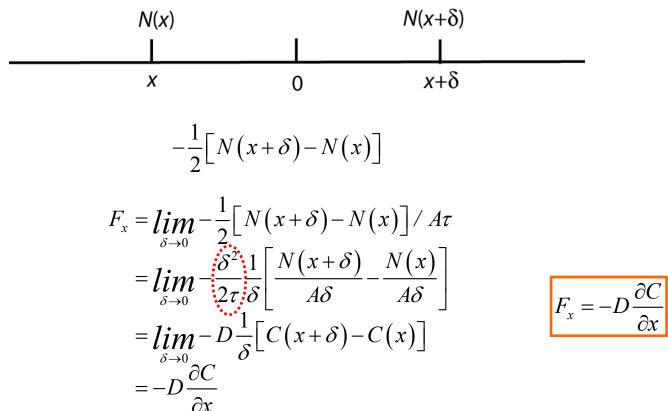

$$p(x) = \frac{1}{\sqrt{4\pi Dt}} e^{-\frac{x^2}{4Dt}} \text{ where } n\delta^2 = 2Dt$$

Application of the Microscopic Theory (I)

Object	Distance diffused			
	1 μm	100 μm	1 mm	1 m
K ⁺	0.25ms	2.5s	2.5×10 ⁴ s (7 hrs)	2.5×10 ⁸ s (8 yrs)
Protein	5ms	50s	5.0×10 ⁵ s (6 days)	5.0×10 ⁹ s (150 yrs)
Organelle	1s	10 ⁴ s (3 hrs)	10 ⁸ s (3 yrs)	10 ¹² s (31710 yers)

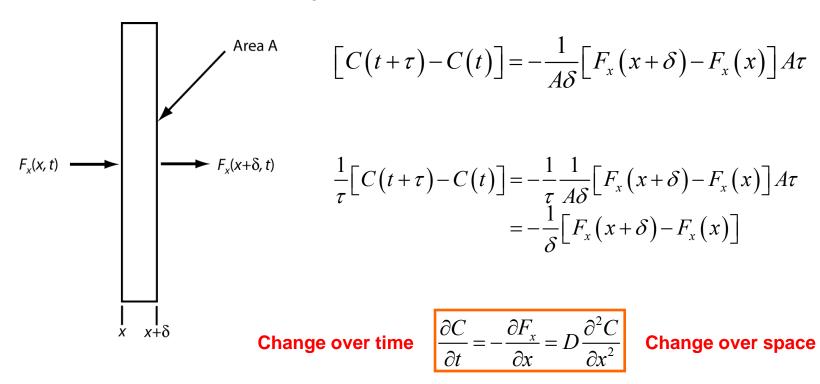
K+: Radius = 0.1nm, viscosity = $1\text{mPa}\cdot\text{s}^{-1}$; T = 25°C ; D= $2000 \,\mu\text{m}^2/\text{sec}$ Protein: Radius = 3nm, viscosity = $0.6915\text{mPa}\cdot\text{s}^{-1}$; T = 37; D = $100 \,\mu\text{m}^2/\text{sec}$ Organelle: Radis = 500nm, viscosity = $0.8904\text{mPa}\cdot\text{s}^{-1}$; T = 25°C ; D = $0.5 \,\mu\text{m}^2/\text{sec}$

Application of the Microscopic Theory (II)


H. Qian, M. P. Sheetz, E. L. Elson, <u>Single particle tracking:</u> <u>analysis of diffusion and flow in two-dimensional systems</u>, Biophysical Journal, 60(4):910-921, 1991.

Outline

- Background: FRAP & SPT
- Review: microscopic diffusion theory
- Review: macroscopic diffusion theory
- An overview of the cytoskeleton
- Actin and its associated proteins


Macroscopic Theory of Diffusion (I)

 Fick's first equation: net flux is proportional to the spatial gradient of the concentration function.

Macroscopic Theory of Diffusion (II)

Fick's second equation

The time rate of change in concentration is proportional to the curvature of the concentration function.

Diffusion Coefficient of a Particle

Einstein-Smoluchowski Relation

$$v_{d} = \frac{1}{2}a\tau = \frac{1}{2}\frac{F_{x}}{m}\tau$$

$$f = \frac{F_{x}}{v_{d}} = \frac{2m}{\tau} = \frac{2m\frac{\delta^{2}}{\tau^{2}}}{\sqrt{\delta^{2}}} = \frac{mv_{x}^{2}}{D} = \frac{kT}{D}$$

$$D = \frac{kT}{f}$$
 f: viscous drag coefficient

 Stokes' relation: the viscous drag coefficient of a sphere moving in an unbounded fluid

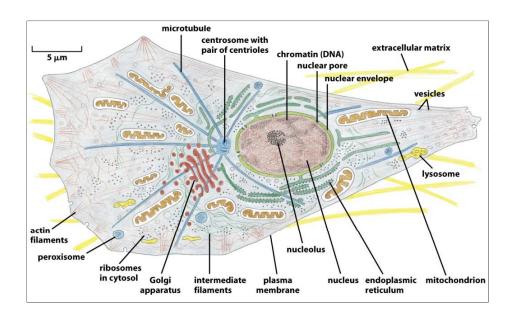
$$f = 6\pi\eta r$$
 η : viscousity r: radius

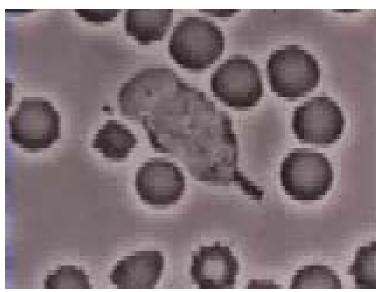
An example of D calculation

Calculation of diffusion coefficient

$$D = \frac{kT}{6\pi\eta r}$$

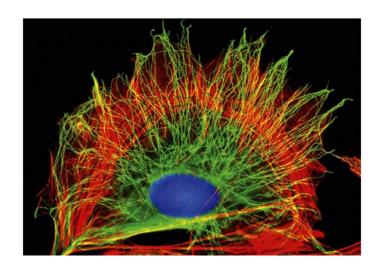
- $k=1.381\times10^{-23}$ J/k= 1.381×10^{-17} N· μ m/k
- T = 273.15 + 25
- η =0.8904mPa·s=0.8904 ×10⁻³ ×10⁻¹²N· μ m⁻²·s
- r= 500nm=0.5µm
- D=0.5 μ m²/s

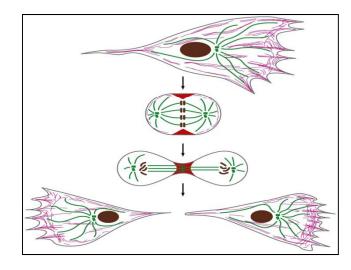

References


- Howard Berg, <u>Random Walks in Biology</u>, Princeton University Press, 1993.
- Jonathon Howard, <u>Mechanics of Motor Proteins and the Cytoskeleton</u>, Sinauer Associated, 2001.

Outline

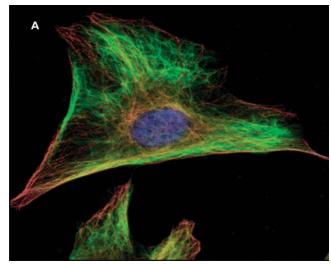
- Background: FRAP & SPT
- Review: microscopic diffusion theory
- Review: macroscopic diffusion theory
- An overview of the cytoskeleton
- Actin and its associated proteins

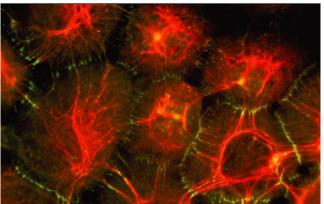

The Cytoskeleton is Highly Dynamic and Regulated



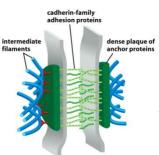
The Cytoskeleton (I)

- Three classes of filaments
 - actin: stress fiber; cell cortex; filopodium
 - microtubule: centrosome
 - intermediate filaments

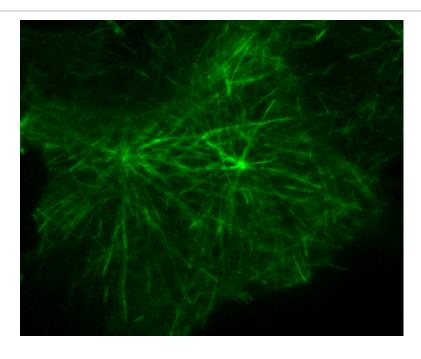


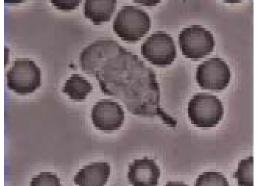

Red: actin
Green: microtubule

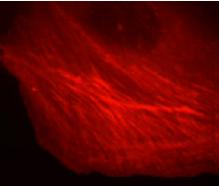
The Cytoskeleton (II)


- Intermediate filaments
- Spatial organization of cytoskeletal filaments is dependent on many factors, e.g.
 - cell type
 - cell states (cycle)
 - cell activities

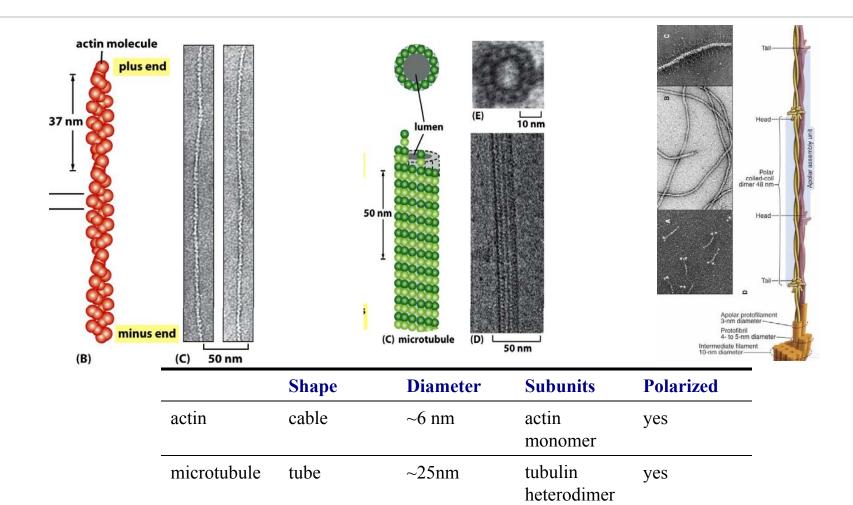
Green: vimentin IF Red: microtubule




Orange: keratin IF
Green: desmosome



The Cytoskeleton (III)

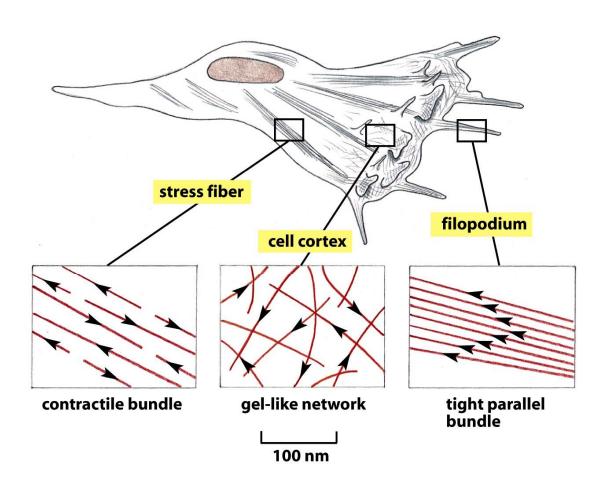

- The cytoskeleton plays a critical role in many basic cellular functions, e.g.
 - structural organization & support
 - shape control
 - intracellular transport
 - force and motion generation
 - signaling integration
- Highly dynamic and adaptive

Overview of Cytoskeletal Filaments

 $\sim 10 \text{nm}$

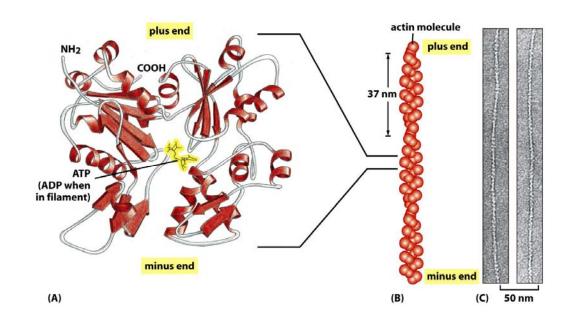
Various

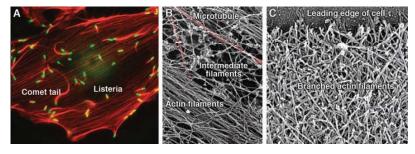
dimers


no

intermediate

filament


rope

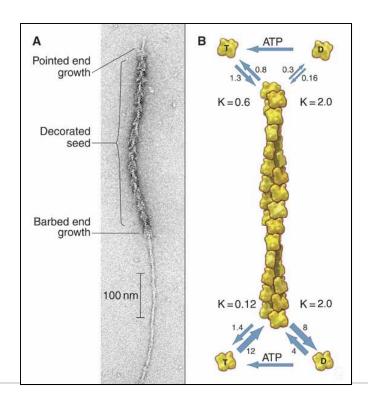

Organization of Actin with a Cell

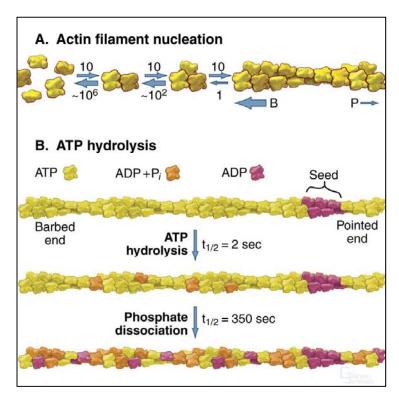
Actin Structure and Function

- Each actin subunit is a globular monomer.
- One ATP binding site per monomer.
- Functions
 - Cell migration
 - Cell shape
 - Used as tracks for myosin for short distance transport

Pollard & Cooper, Science, 326-1208, 2009

Basics Terms of Chemical Reaction Kinetics

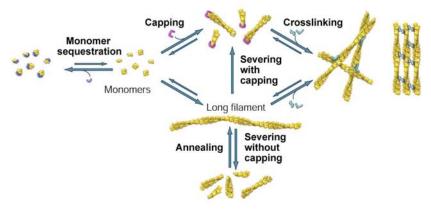

A reversible bimolecular binding reaction


$$A + B \Longrightarrow AB$$

- Rate of association = k₊[A][B]
- Rate of disassociation = k_[AB]
- At equilibrium k₊[A][B] = k₋[AB]

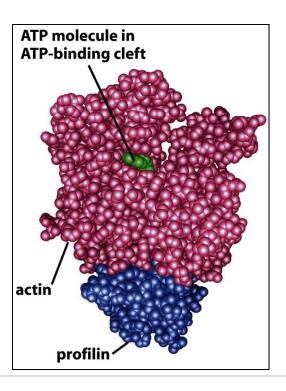
Actin Nucleation and Nucleotide Hydrolysis

 Actin polymerizes and depolymerizes substantially faster at the plus end (barbed end) than at the minus end (pointed end).


Outline

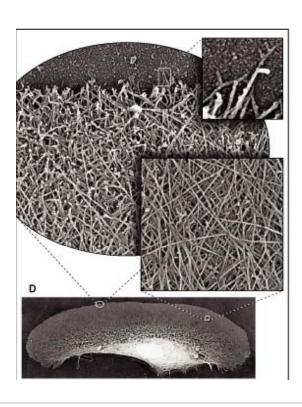
- Background: FRAP & SPT
- Review: microscopic diffusion theory
- Review: macroscopic diffusion theory
- An overview of the cytoskeleton
- Actin and its associated proteins

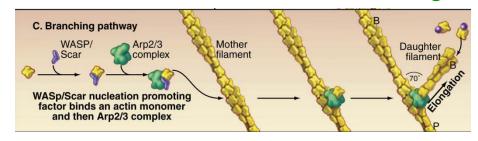
Actin Accessory Proteins (I)

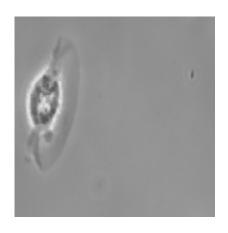

More than 60 families identified so far.

- Functions
 - Monomer binding
 - Nucleation
 - Filament capping
 - Filament severing
 - Filament side-binding and supporting
 - Filament crosslinking
 - Signaling adapter
- Functional overlap and collaboration between actinbinding proteins

Actin Accessory Proteins (II)

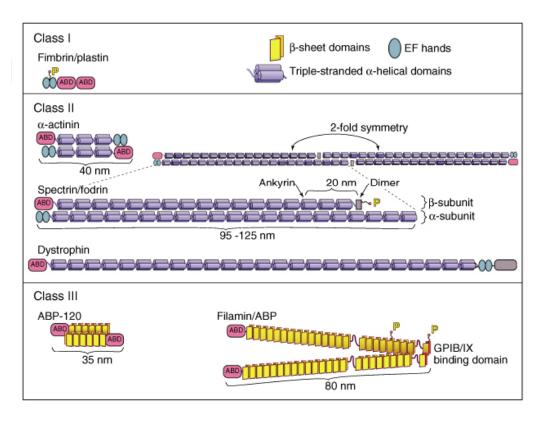

- Monomer binding proteins
 - profilin: to bind actin monomer and accelerate elongation
 - thymosin: to bind and lock actin monomer
 - ADF/cofilin: to bind and destabilize ADP-actin filaments




Actin Accessory Proteins (III)

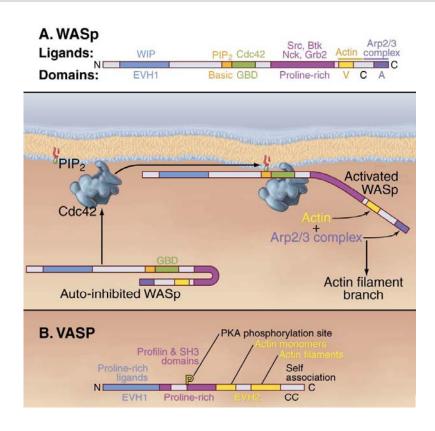
Actin nucleation

- Formins: to initiate unbranched actin filaments
- Arp2/3: to bind the side of actin and initiate branching

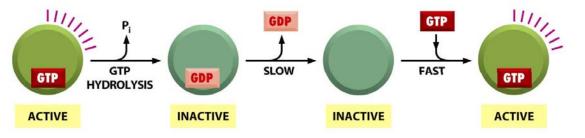


Actin Accessory Proteins (IV)

- Actin capping protein
 - Blocks subunit addition and disassociation
- Actin severing protein
- Three families of proteins perform both functions
 - Gelsolin
 - Fragmin-severin
 - ADF/cofilin


Actin Accessory Proteins (V)

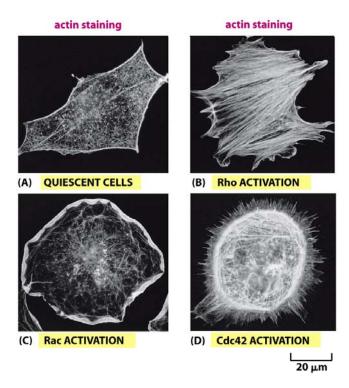
- Actin side-binding proteins tropomyosin, nebulin, caldesmon
- Actin crosslinking
 - α-actinin
 - filamin
 - spectrin
 - ERM


Actin Adapter Protein

 Adaptor proteins such as WASP (a branching mediating factor) & VASP (a polymerization mediating factor) server as connectors between signaling pathways and actin assembly.

Actin Regulation

GTPase: Molecule switch;
 Family of proteins that are activated by GTP binding and inactivated by GTP hydrolysis and phosphate dissociation.



Rho GTPase:

<u>cdc42:</u> its activation triggers actin polymerization and bundling at filopodia.

Rho: its activation promotes actin bundling.

Rac: its activation promotes polymerization at the cell periphery.

Rac on Actin Organization

Summary: actin

- Relatively soft (quantification in following lectures).
- Often form bundles; mechanical strength comes mostly from bundling and crosslinking.
- Mostly function to withstand tension rather than compression.
- Relatively stable and easy to work with (biochemically).

Summary: actin accessory proteins

- Different proteins have distinct functions.
- Proteins with multiple functional domains can have multiple functions.
- Some of them are essential.
- Most of the proteins have functional overlap.

Required Reading

• Chapter 16

Questions?