BME 42-620 Engineering Molecular Cell Biology

Lecture 04:

Basics of MATLAB

Structure and Dynamics of Cellular Molecules
Outline

• Basics of MATLAB
• Chemical composition of a cell
• Chemical bonds of cellular molecules
• A brief introduction to protein structures
• A brief introduction to protein folding
Outline

• Basics of MATLAB

• Chemical composition of a cell
• Chemical bonds of cellular molecules
• A brief introduction to protein structures
• A brief introduction to protein folding
MATLAB Overview

- MATLAB stands for "matrix laboratory“, a product of MathWorks Inc. (Natick, Massachusetts).

- It is both a language and a development and application environment.

- History of MATLAB
 - First developed in 1970's by Cleve Moler, coauthor of LINPACK & EISPACK
 - First written in FORTRAN; Later rewritten in C
 - Commercial development initiated by Jack Little
 - MathWorks was founded in 1984.
 - In 2000, rewritten based on LAPACK.

Sources:
http://www.mathworks.com/company/aboutus/founders/cleemoler.html
http://www.mathworks.com/company/aboutus/founders/jacklittle.html
Advantages of MATLAB (I)

• MATLAB provides reliable and efficient numerical computation with friendly user interfaces.
 - Maple, Mathematica strong in symbolic computation

• Examples of numerical computation issues
 - Precision; numerical stability
 - Underflow and overflow
 - Code quality (debugging, exception handling)
 - Code efficiency (optimization)

• Visit www.netlib.org for more information about different numerical packages.
Advantages of MATLAB (II)

• Fast prototyping: MATLAB is an interpreted language
• Extensive toolboxes
• Versatile graphics
• Cross-platform: Windows, Unix, Linux, Mac OS
• Support parallel computing
• Support object oriented programming
• Large groups of users
 MATLAB file exchange (use with caution)
 http://www.mathworks.com/matlabcentral/
MATLAB Toolboxes (I)

• A large collection of basic math functions are provided in the MATLAB base package.

• Function extensions are packaged as toolboxes.

• Math and optimization
 - Optimization toolbox
 - PDE toolbox
 - Genetic algorithm and direct search algorithm

• Statistics & data analysis
 - Statistics toolbox
 - Curve fitting toolbox
 - Spline toolbox
 - Neural network toolbox
MATLAB Toolboxes (II)

- Signal & image processing
 - Signal processing toolbox
 - Image processing toolbox
 - Wavelet toolbox

- Third party toolboxes
 - Pattern recognition toolbox: www.prtools.org
 - Wavelet toolbox: http://www-stat.stanford.edu/~wavelab/
Limitations of MATLAB

- To a great extent, computation details are hidden.

- Limited efficiency: MATLAB is an interpreted language.
 - Compiler also available
 - Can use MEX (MATLAB executable) to call DLL implemented in C

- Lack of properties to support large scale software development
 - E.g. implicit & dynamic data type

- MATLAB is the required implementation language for this class.
Learning MATLAB

• How to write a MATLAB function
 - Video

• Some references
 - There are many MATLAB tutorials online and books available.
 - Kermit Sigmon, MATLAB Primer, 3rd ed.
 - MATLAB User’s Guide.

• Reminder: MATLAB computation results can be saved in .mat files and loaded back.

• Reminder: MAT files are exchangeable on different platforms.
Getting Help with MATLAB

• First, read related references and practice.

• For a specific function, it is often helpful to look in MATLAB online help.

• For a general question, it is often helpful to check related toolbox manuals.

• If none of these works, direct your questions to the instructor.
Outline

• Basics of MATLAB

• Chemical composition of a cell

• Chemical bonds of cellular molecules

• A brief introduction to protein structures

• A brief introduction to protein folding
Chemical Compositions of Cells (I)

- Cells are made mostly of macromolecules.
- Macromolecules dominate the physics and chemistry of a cell.

Table 2–3 Approximate Chemical Compositions of a Typical Bacterium and a Typical Mammalian Cell

<table>
<thead>
<tr>
<th>COMPONENT</th>
<th>E. COLI BACTERIUM</th>
<th>MAMMALIAN CELL</th>
</tr>
</thead>
<tbody>
<tr>
<td>H₂O</td>
<td>70</td>
<td>70</td>
</tr>
<tr>
<td>Inorganic ions (Na⁺, K⁺, Mg²⁺, Ca²⁺, Cl⁻, etc.)</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Miscellaneous small metabolites</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>Proteins</td>
<td>15</td>
<td>18</td>
</tr>
<tr>
<td>RNA</td>
<td>6</td>
<td>1.1</td>
</tr>
<tr>
<td>DNA</td>
<td>1</td>
<td>0.25</td>
</tr>
<tr>
<td>Phospholipids</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>Other lipids</td>
<td>–</td>
<td>2</td>
</tr>
<tr>
<td>Polysaccharides</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>Total cell volume</td>
<td>2 × 10⁻¹² cm³</td>
<td>4 × 10⁻⁹ cm³</td>
</tr>
<tr>
<td>Relative cell volume</td>
<td>1</td>
<td>2000</td>
</tr>
</tbody>
</table>

Alberts MBoc 5e
Chemical Compositions of Cells (II)

- Macromolecules in cells are usually polymers.

- **Polymer**: a natural or synthetic compound of large molecules that are formed by a linked series of repeated structural units.

<table>
<thead>
<tr>
<th>Table 2-2 The Approximate Chemical Composition of a Bacterial Cell</th>
</tr>
</thead>
<tbody>
<tr>
<td>PERCENT OF TOTAL CELL WEIGHT</td>
</tr>
<tr>
<td>Water</td>
</tr>
<tr>
<td>Inorganic ions</td>
</tr>
<tr>
<td>Sugars and precursors</td>
</tr>
<tr>
<td>Amino acids and precursors</td>
</tr>
<tr>
<td>Nucleotides and precursors</td>
</tr>
<tr>
<td>Fatty acids and precursors</td>
</tr>
<tr>
<td>Other small molecules</td>
</tr>
<tr>
<td>Macromolecules (proteins, nucleic acids, and polysaccharides)</td>
</tr>
</tbody>
</table>

Alberts *MBoC* 5e
Atoms Forming a Cell & Chemical Bonds

• All living organisms are fundamentally chemical systems.

• Cells are made primarily of a few chemical elements.
 - Organic chemistry; biochemistry
 - Statistical mechanics, thermodynamics

• Cell chemistry is based overwhelmingly on carbon compounds and reactions in water.

• Atoms that make up a molecule are joined together by different chemical bonds, which define boundaries between molecules.
Outline

• Basics of MATLAB
• Chemical composition of a cell
• Chemical bonds of cellular molecules
• A brief introduction to protein structures
• A brief introduction to protein folding
Chemical Bonds of Cellular Molecules (I)

- Chemical bonds of cellular molecules
 - Covalent bonds
 - Noncovalent bonds

- Four types of noncovalent attractions
 - Electrostatic attractions
 - Hydrogen bonds
 - van der Waals attraction
 - Hydrophobic force

- Ionic bond is a type of strong electrostatic attraction between fully charged atoms.

<table>
<thead>
<tr>
<th>BOND TYPE</th>
<th>LENGTH (nm)</th>
<th>STRENGTH (kcal/mole)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>IN VACUUM</td>
<td>IN WATER</td>
</tr>
<tr>
<td>Covalent</td>
<td>0.15</td>
<td>90</td>
</tr>
<tr>
<td>Noncovalent: ionic*</td>
<td>0.25</td>
<td>80</td>
</tr>
<tr>
<td>hydrogen</td>
<td>0.30</td>
<td>4</td>
</tr>
<tr>
<td>van der Waals attraction</td>
<td>0.35</td>
<td>0.1</td>
</tr>
<tr>
<td>(per atom)</td>
<td></td>
<td>0.1</td>
</tr>
</tbody>
</table>

*An ionic bond is an electrostatic attraction between two fully charged atoms.
Chemical Bonds of Cellular Molecules (II)

- Covalent bonds are abundant in cellular molecules.

- There are different types of covalent bonds.
 - single bonds, double bonds
 - polar covalent bonds vs nonpolar covalent bonds

- Polar covalent bonds allow cellular molecules to interact through electrostatic forces.
Chemical Bonds of Cellular Molecules (III)

• **Hydrogen bonds**: an electropositive hydrogen is shared by two electronegative atoms.
 - Highly directional
 - Example: nucleotide base pairing

• Nonpolar atoms can become dipoles transiently due to the fluctuation of their electron cloud.

• **van der Waals attractions** result from attraction of atoms of opposite transient dipoles

• Water weakens hydrogen bonds but not van der Waals attractions.
Chemical Bonds of Cellular Molecules (IV)

- Water molecules are polar.

- Water molecules form hydrogen bonds with each other.

- Functions
 - A solvent for most cellular molecules.
 - Reactant or product in cellular biochemical reactions

- Water molecules forms hydrogen binds with many cellular molecules and generates functionally important complexes.
 - e.g. ion-water complex can affect ion permeability
Chemical Bonds of Cellular Molecules (V)

- Molecules can be hydrophilic or hydrophobic.
 - hydrophilic: polar or charged molecules/groups that dissolve easily in water
 - hydrophobic: nonpolar molecules/groups that are insoluble in water

- Nonpolar surfaces tend to be pushed out of the water molecule network → Hydrophobic force

- Hydrophobic effect stabilizes biological structure.
Intermolecular Bonding: Noncovalent Bonds

• **Hydrophobic interaction** results from the pushing of nonpolar surfaces out of the hydrogen-bonded water network.
 - Brings nonpolar surfaces together to reduce contact with water
 - Critical to protein folding

• **Noncovalent bonds define interactions between molecules.**

• Interactions between cellular molecules are defined by relative weak noncovalent bonds.
 - sensitivity
 - flexibility
 - transient interaction
Outline

• Basics of MATLAB
• Chemical composition of a cell
• Chemical bonds of cellular molecules
• A brief introduction to protein structures
• A brief introduction to protein folding
Proteins: Overview

- Proteins are the predominant structural and functional components of all cells.
- Proteins vary widely in length, typically in the range of 100~1000 amino acids.
- Determination of protein sequence
 - Genetic approach
 - Mass spectrometry
Protein Primary Structure (I)

- 20 naturally occurring amino acids
- Amino acids differ in side chains

![Amino acid structures](image-url)
Protein Primary Structure (II)

- Amino acids can be hydrophobic, hydrophilic, or amphipathic.

- Amphipathic: residues that have both polar and unpolar properties and are ideal for forming interfaces.
Protein Primary Structure (III)
Terminology

• **Genome**: all the genetic information encoded in a cell. → Genomics

• **Proteome**: the complete set of proteins expressed in a cell. → Proteomics

• **Backbone**: the regularly repeating part of a polymer.

• **Residue**: the basic building block of a polymer.

• **Sidechain**: the chemical group that protrudes from the backbone.

• **Polypeptide**: a linear polymer of amino acids.

• **Homologs**: Different forms of a gene/protein that are similar in sequence as a result of derivation from the same ancestral gene.

• **Isoforms**: Different forms of a protein that may be produced from different genes, or from the same gene by alternative splicing in the same cell.
How Protein Structures are Determined

X-ray crystallography

Structure data interpretation is not unambiguous. Information from multiple sources is often required to fully determine the structure.

NMR
Nuclear magnetic resonance
Protein Structure Overview

- **A structural hierarchy**
 - primary structure
 - secondary structure
 - tertiary structure
 - quarternary structure

- **Different representations**
 - wire diagram
 - ribbon
 - ball-and-stick
 - space filling
 - surface
Secondary Structure (I)

- Secondary structure
 - Local structures of repeated residue conformation
 - Two primary types of secondary structure elements (i.e. folding patterns: alpha helix, beta sheet.
- Alpha helix was first discovered in hair protein keratin.
- Beta sheet was first discovered in fibroin, the silk protein.
- Both patterns result from hydrogen bonding between N-H and C=O group of the backbone.
Secondary Structure (II)

• Many cellular proteins contain extensive regions of beta sheets, which provide structural rigidity.

• Alpha helix are abundant in membrane proteins.

• Many proteins contain a hydrophobic core.

• Secondary structure consists of extensive network of hydrogen bonds and contributes significantly to the stabilization of the overall protein structure.
Tertiary Structure (I)

- Tertiary structure
 - The three dimensional conformation of a protein is its native folded state; i.e. the global organization of secondary structures.

- Tertiary structures are not regular. Proteins with similar secondary structure elements can have very different tertiary structures.

Left: triosephosphate isomerase
Right: dihydrofolate
Tertiary Structure (II)

- The folded structure of a protein is directly determined by its primary structure.

- Condensing of multiple secondary structural elements leads to tertiary structure.

- Computational predication of folding is not yet reliable.

- Most folded proteins are marginally stable to allow flexibility.

- Conformation changes tend to be local.
Quaternery Structure (I)

- Many proteins have more than one polypeptide chain. These proteins are called oligomers.

- Individual polypeptide chains are referred to as monomers.

- Quaternary structure is the arrangement of different polypeptide chains.
Quaternary Structure (II)

- Irregular protein surfaces enables specific binding.

- Specific intermolecular interactions depend on complementarity.

- Protein binding can trigger large conformational changes
Protein Interactions (I)

- Selectivity and affinity of protein binding depend on weak noncovalent bonds.

- Surface conformation of a protein defines its chemistry.

- The most common way of protein interaction is through precise matching of surfaces.

- Protein interactions often require catalysis by enzymes.
Protein Interactions (II)

- Protein interactions often require catalysis by enzymes.

(A) enzyme binds to two substrate molecules and orients them precisely to encourage a reaction to occur between them

(B) binding of substrate to enzyme rearranges electrons in the substrate, creating partial negative and positive charges that favor a reaction

(C) enzyme strains the bound substrate molecule, forcing it toward a transition state to favor a reaction

the surfaces of molecules A and B, and A and C, are a poor match and are capable of forming only a few weak bonds; thermal motion rapidly breaks them apart

the surfaces of molecules A and D match well and therefore can form enough weak bonds to withstand thermal jolting; they therefore stay bound to each other
Protein Interactions (II)

- A complex network of protein interactions underlies cell function.
Outline

- Basics of MATLAB
- Chemical composition of a cell
- Chemical bonds of cellular molecules
- A brief introduction to protein structures
- A brief introduction to protein folding
Protein Folding: the Energy Landscape Theory

• First proposed by Joseph Bryngelson and Peter Wolynes.

• **Principle of minimal frustration**: the native folded state is favored by evolution.

• The energy landscape is encoded by the amino acid sequence and represents all the possible energy states.

Protein Folding in Cells

- Protein folding in cells can happen before the completion of synthesis (co-translational).
- Complex protein structures often fold after exit from ribosomes.
- Incorrectly fold proteins are detected by a quality-control mechanism and sent for degradation.

Chaperone-Assisted Protein Folding

- Chaperons increase the efficiency of protein folding by avoiding unfavorable folding paths.

- Typical functions
 - To prevent aggregations.
 - To prevent interference.
Structure of DNA and RNA

• DNA secondary structure
 - Purine: adenine (A) guanosine (G)
 - Pyrimidines: thymine (T) cytosine (C)

• RNA secondary structure
 - Purine: adenine (A) guanosine (G)
 - Pyrimidines: uracil (U) cytosine (C)
The Cytoplasm

- **The global view:** the cytoplasm is densely populated.

- Only correctly folded proteins have long-term stability.
Some Comments

• Biochemistry
 - The level of molecular details really depends on the question to be addressed.

• Structural biology
 - Provides critical insights into cellular processes.
 - Needs to be integrated with other approaches.
 - Structural genomics aims to determine the primary and tertiary structures of all proteins of a given organism.
Questions?
Small Molecules

• Definition of small molecules is not firm.

• Can be natural or synthesized. Not a polymer.

• Low molecular weight permits fast permeation across membranes.

• Used to induce immediate functional perturbations.

• Important targets of pharmacology and chemical biology research.

<table>
<thead>
<tr>
<th>Table 2–2 The Approximate Chemical Composition of a Bacterial Cell</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
<tr>
<td>Water</td>
</tr>
<tr>
<td>Inorganic ions</td>
</tr>
<tr>
<td>Sugars and precursors</td>
</tr>
<tr>
<td>Amino acids and precursors</td>
</tr>
<tr>
<td>Nucleotides and precursors</td>
</tr>
<tr>
<td>Fatty acids and precursors</td>
</tr>
<tr>
<td>Other small molecules</td>
</tr>
<tr>
<td>Macromolecules (proteins, nucleic acids, and polysaccharides)</td>
</tr>
</tbody>
</table>
Small Molecules References

An Overview of Cell Biology Literature

• Journals
 – General purpose journals
 - Science
 - Nature
 - PNAS
 – Specialized journals
 - Cell
 - Journal of Cell Biology
 - Nature associated journals

• Commercial vs noncommercial journals

• Review journals and review articles
How to Read Cell Biology Papers (I)

• To be able to critically read and evaluate contemporary biology papers - Why so critical?

• General guidelines
 - Fundamentally, it is about original data and ideas
 - Not that different from a mathematical proof: Logical coherence and rigor

• Highly stereotyped structures of biology papers

• Organization (I): biology papers are result-driven
 - Introduction: However, …
 - Results: To…, we did …
 - Discussion: We speculate …
How to Read Cell Biology Papers

• Organization (II):
 - Every figure must tell
 - Logical flow: connection between result sections

• Our aims

 - To be able to effectively read papers in cell biology
 - To be able to effectively communicate cell biology research results
Process of Publication

• Journal selection
 - What are the messages: *short vs long format*
 - Usually several comparable journals to choose from
 Similar paper formats
 Similar review standards
 - Keep a rational perspective: *vanity journals*
 - Keep doing good science, your record will show

• Submission and review process
 - Pre-submission inquiry: usually for vanity journals
 - Editorial review
 - External review
 - Outcome I: preliminary acceptance
 Point-to-point response to reviews
 - Outcome II: rejection
 - Peer-review system not perfect but generally works
References

Petsko & Ringe
New Science, 2004

Nelson & Cox
W.H. Freeman, 2008

Dill & Bromberg,
Garland Sciences, 2002
Project Assignment 1