BME 42-620 Engineering Molecular Cell Biology

Lecture 04:

Basics of MATLAB

Structure and Dynamics of Cellular Molecules

Outline

- Basics of MATLAB
- Chemical composition of a cell
- Chemical bonds of cellular molecules
- A brief introduction to protein structures
- A brief introduction to protein folding

Outline

• Basics of MATLAB

- Chemical composition of a cell
- Chemical bonds of cellular molecules
- A brief introduction to protein structures
- A brief introduction to protein folding

MATLAB Overview

- MATLAB stands for "matrix laboratory", a product of MathWorks Inc. (Natick, Massachusetts).
- It is both a language and a development and application environment.
- History of MATLAB
 - First developed in 1970's by Cleve Moler, coauthor of LINPACK & EISPACK
 - First written in FORTRAN; Later rewritten in C
 - Commercial development initiated by Jack Little - MathWorks was founded in 1984.
 - In 2000, rewritten based on LAPACK.

Sources:

http://www.mathworks.com/company/aboutus/founders/clevemoler.html http://www.mathworks.com/company/aboutus/founders/jacklittle.html http://www.mathworks.com/company/newsletters/news_notes/clevescorner/dec04.html

Advantages of MATLAB (I)

- MATLAB provides reliable and efficient numerical computation with friendly user interfaces.
 - Maple, Mathematica strong in symbolic computation
- Examples of numerical computation issues
 - Precision; numerical stability
 - Underflow and overflow
 - Code quality (debugging, exception handling)
 - Code efficiency (optimization)
- Visit <u>www.netlib.org</u> for more information about different numerical packages.

Advantages of MATLAB (II)

- Fast prototyping: <u>MATLAB is an interpreted language</u>
- Extensive toolboxes
- Versatile graphics
- Cross-platform: Windows, Unix, Linux, Mac OS
- Support parallel computing
- Support object oriented programming
- Large groups of users

MATLAB file exchange (use with caution)

http://www.mathworks.com/matlabcentral/

MATLAB Toolboxes (I)

- A large collection of basic math functions are provided in the MATLAB base package.
- Function extensions are packaged as toolboxes.
- Math and optimization
 - Optimization toolbox
 - PDE toolbox
 - Genetic algorithm and direct search algorithm
- Statistics & data analysis
 - Statistics toolbox
 - Curve fitting toolbox
 - Spline toolbox
 - Neural network toolbox

MATLAB Toolboxes (II)

- Signal & image processing
 - Signal processing toolbox
 - Image processing toolbox
 - Wavelet toolbox
- Third party toolboxes
 - Pattern recognition toolbox: www.prtools.org
 - Wavelet toolbox: http://www-stat.stanford.edu/~wavelab/

Limitations of MATLAB

- To a great extent, computation details are hidden.
- Limited efficiency: MATLAB is an interpreted language.
 - Compiler also available
 - Can use MEX (MATLAB executable) to call DLL implemented in C
- Lack of properties to support large scale software development
 - E.g. implicit & dynamic data type

• MATLAB is the required implementation language for this class.

Learning MATLAB

- How to write a MATLAB function
 - Video
- Some references
 - There are many MATLAB tutorials online and books available.
 - Kermit Sigmon, MATLAB Primer, 3rd ed.
 - MATLAB User's Guide.
- Reminder: MATLAB computation results can be saved in <u>.mat</u> <u>files</u> and loaded back.
- Reminder: MAT files are exchangeable on different platforms.

Getting Help with MATLAB

- First, read related references and practice.
- For a specific function, it is often helpful to look in MATLAB online help.
- For a general question, it is often helpful to check related toolbox manuals.
- If none of these works, direct your questions to the instructor.

Outline

- Basics of MATLAB
- Chemical composition of a cell
- Chemical bonds of cellular molecules
- A brief introduction to protein structures
- A brief introduction to protein folding

Chemical Compositions of Cells (I)

- Cells are made mostly of macromolecules.
- Macromolecules dominate the physics and chemistry of a cell.

COMPONENT	PERCENT OF TOTAL CELL WEIGHT E. COLI BACTERIUM MAMMALIAN CELL		
H ₂ O	70	70	
Inorganic ions (Na ⁺ , K ⁺ , Mg ²⁺ , Ca ²⁺ , Cl ⁻ , etc.)	1	1	
Miscellaneous small metabolites	3	3	
Proteins	15	18	
RNA	6	1.1	
DNA	1	0.25	
Phospholipids	2	3	
Other lipids	-	2	
Polysaccharides	2	2	
Total cell volume	$2 imes10^{-12}\mathrm{cm}^3$	$4 \times 10^{-9} \mathrm{cm}^3$	
Relative cell volume	1	2000	

Table 2–3 Approximate Chemical Compositions of a Typical Bacterium and a Typical Mammalian Cell

Alberts MBoC 5e

Chemical Compositions of Cells (II)

- Macromolecules in cells are usually polymers.
- <u>Polymer:</u> a natural or synthetic compound of large molecules that are formed by a linked series of repeated structural units.

Table 2–2 The Approximate Chemical Composition of a Bacterial Cell

	PERCENT OF TOTAL CELL WEIGHT	NUMBER OF TYPES OF EACH MOLECULE
Water	70	1
Inorganic ions	1	20
Sugars and precursors	1	250
Amino acids and precursors	0.4	100
Nucleotides and precursors	0.4	100
Fatty acids and precursors	1	50
Other small molecules	0.2	~300
Macromolecules (proteins, nucleic acids, and polysaccharides)	26	~3000

Alberts MBoC 5e

Atoms Forming a Cell & Chemical Bonds

- All living organisms are fundamentally chemical systems.
- Cells are made primarily of a few chemical elements.
 - Organic chemistry; biochemistry
 - Statistical mechanics, thermodynamics
- Cell chemistry is based overwhelmingly on carbon compounds and reactions in water.
- Atoms that make up a molecule are joined together by different chemical bonds, which define boundaries between molecules.

Outline

- Basics of MATLAB
- Chemical composition of a cell
- Chemical bonds of cellular molecules
- A brief introduction to protein structures
- A brief introduction to protein folding

Chemical Bonds of Cellular Molecules (I)

- Chemical bonds of cellular molecules
 - Covalent bonds
 - Noncovalent bonds
- Four types of noncovalent attractions
 - Electrostatic attractions
 - Hydrogen bonds
 - van der Waals attraction
 - Hydrophobic force
- lonic bond is a type of strong electrostatic attraction between fully charged atoms.

Table 2–1 Covalent and Noncovalent Chemical Bonds

BOND TYPE	LENGTH (nm)	STRENGTH (I IN VACUUM	kcal/mole) IN WATER
Covalent	0.15	90	90
Noncovalent: ionic*	0.25	80	3
hydrogen	0.30	4	1
van der Waals attraction (per atom)	0.35	0.1	0.1

*An ionic bond is an electrostatic attraction between two fully charged atoms.

Chemical Bonds of Cellular Molecules (II)

- Covalent bonds are abundant in cellular molecules.
- There are different types of covalent bonds.
 - single bonds, double bonds
 - ploar covalent bonds vs nonpolar covalent bonds
- Polar covalent bonds allow cellular molecules to interact through electrostatic forces.

Chemical Bonds of Cellular Molecules (III)

- Hydrogen bonds: an electropositive hydrogen is shared by two electronegative atoms.
 - Highly directional
 - Example: nucleotide base pairing
- Nonpolar atoms can become dipoles transiently due to the fluctuation of their electron cloud.
- <u>van der Waals attractions</u> result from attraction of atoms of opposite transient dipoles
- Water weakens hydrogen bonds but not van der Waals attractions.

Alberts MBoC 5e

Chemical Bonds of Cellular Molecules (IV)

- Water molecules are polar.
- Water molecules form hydrogen bonds with each other.
- Functions
 - A solvent for most cellular molecules.
 - Reactant or product in cellular biochemical reactions
- Water molecules forms hydrogen binds with many cellular molecules and generates functionally important complexes.
 - e.g. ion-water complex can affect ion permeability

Karp CMB 5e

Chemical Bonds of Cellular Molecules (V)

- Molecules can be hydrophilic or hydrophobic.
 - hydrophilic: polar or charged molecules/groups that dissolve easily in water
 - hydrophobic: nonpolar molecules/groups that are insoluble in water
- Nonpolar surfaces tend to be pushed out of the water molecule network
 → Hydrophobic force
- Hydrophobic effect stabilizes biological structure.

Intermolecular Bonding: Noncovalent Bonds

- <u>Hydrophobic interaction</u> results from the pushing of nonpolar surfaces out of the hydrogen-bonded water network.
 - Brings nonpolar surfaces together to reduce contact with water
 - Critical to protein folding
- Noncovalent bonds define interactions between molecules.
- Interactions between cellular molecules are defined by relative weak noncovalent bonds.
 - sensitivity
 - flexibility
 - transient interaction

Outline

- Basics of MATLAB
- Chemical composition of a cell
- Chemical bonds of cellular molecules
- A brief introduction to protein structures
- A brief introduction to protein folding

Proteins: Overview

- Proteins are the predominant structural ۲ and functional components of all cells.
- Proteins vary widely in length, typically in ٠ the range of 100~1000 amino acids.
- Determination of protein sequence ۲
 - Genetic approach
 - Mass spectrometry

Leu

Leu

lle

lle

lle

Met

Val

Val

Val

Val

Α

G

Pro

Pro

Thr

Thr

Thr

Thr

Ala

Ala

Ala

Ala

GIn

GIn

Asn

Asn

Lys

Lys

Asp

Asp

Glu

Glu

Arg

Arg

Ser

Ser

Arg

Arg

Gly

Gly

Gly

UCAG

U

CAG

Protein Primary Structure (I)

- 20 naturally occurring amino acids
- Amino acids differ in side chains

Protein Primary Structure (II)

- Amino acids can be hydrophobic, hydrophilic, or amphipathic
- Amphipathic: residues that have both polar and unpolar properties and are ideal for forming interfaces.

Protein Primary Structure (III)

Terminology

- **Genome:** <u>all the genetic information encoded in a cell.</u> \rightarrow Genomics
- **Proteome:** the complete set of proteins expressed in a cell. \rightarrow Proteomics
- Backbone: the regularly repeating part of a polymer.
- **Residue:** the basic building block of a polymer.
- Sidechain: the chemical group that protrudes from the backbone.
- Polypeptide: a linear polymer of amino acids.
- Homologs: Different forms of a gene/protein that are similar in sequence as a result of derivation from the same ancestral gene.
- **Isoforms:** Different forms of a protein that may be produced from different genes, or from the same gene by alternative splicing in the same cell.

How Protein Structures are Determined

Protein Structure Overview

- A structural hierarchy
 - primary structure
 - secondary structure
 - tertiary structure
 - quarternary structure
- Different representations
 - wire diagram
 - ribbon
 - ball-and-stick
 - space filling
 - surface

Secondary Structure (I)

- Secondary structure
 - Local structures of repeated residue conformation
 - Two primary types of secondary structure elements (i.e. folding patterns: alpha helix, beta sheet.
- Alpha helix was first discovered in hair protein keratin.
- Beta sheet was first discovered in fibroin, the silk protein.
- Both patterns result from hydrogen bonding between N-H and C=O group of the backbone.

Secondary Structure (II)

- Many cellular proteins contain extensive regions of beta sheets, which provide structural rigidity.
- Alpha helix are abundant in membrane proteins.
- Many proteins contain a hydrophobic core.
- Secondary structure consists of extensive network of hydrogen bonds and contributes significantly to the stabilization of the overall protein structure.

Tertiary Structure (I)

- Tertiary structure
 - The three dimensional conformation of a protein is its native folded state; i.e. the global organization of secondary structures.
- Tertiary structures are not regular. Proteins with similar secondary structure elements can have very different tertiary structures.

Left: triosephosphate isomerase Right: dihydrofolate

Tertiary Structure (II)

- The folded structure of a protein is directly determined by its primary structure.
- Condensing of multiple secondary structural elements leads to tertiary structure.
- Computational predication of folding is not yet reliable.
- Most folded proteins are marginally stable to allow flexibility.
- Conformation changes tend to be local.

Quarternery Structure (I)

- Many proteins have more than one polypeptide chain. These proteins are called oligomers.
- Individual polypeptide chains are referred to as monomers.
- Quaternary structure is the arrangement of different polypeptide chains.

From **Protein Structure and Function** by Gregory A Petsko and Dagmar Ringe

Quarternery Structure (II)

- Irregular protein surfaces enables specific binding.
- Specific intermolecular interactions depend on complementarity.
- Protein binding can trigger large conformational changes

Alpha helical coiled coil

Protein Interactions (I)

- Selectivity and affinity of protein binding depend on weak noncovalent bonds.
- Surface conformation of a protein defines its chemistry.
- The most common way of protein interaction is through precise matching of surfaces.
- Protein interactions often require catalysis by enzymes.

Protein Interactions (II)

• Protein interactions often require catalysis by enzymes.

Protein Interactions (II)

• A complex network of protein interactions underlies cell function.

Outline

- Basics of MATLAB
- Chemical composition of a cell
- Chemical bonds of cellular molecules
- A brief introduction to protein structures
- A brief introduction to protein folding

Protein Folding: the Energy Landscape Theory

- First proposed by Joseph Bryngelson and Peter Wolynes.
- <u>Principle of minimal</u> <u>frustration</u>: the native folded state is favored by evolution.
- The energy landscape is encoded by the amino acid sequence and represents all the possible energy states.

Dobson, Nature. 426:884, 2003.

Protein Folding in Cells

- Protein folding in cells can happen before the completion of synthesis (cotranslational).
- Complex protein structures often fold after exit from ribosomes.
- Incorrectly fold proteins are detected by a qualitycontrol mechanism and sent for degradation.

Dobson, Nature. 426:884, 2003.

Chaperone-Assisted Protein Folding

- Chaperons increase the efficiency of protein folding by avoiding unfavorable folding paths.
- Typical functions
 - To prevent aggregations.
 - To prevent interference

Structure of DNA and RNA

- DNA secondary structure
 - Purine: adenine (A) guanosine (G)
 - Pyrimidines: thymine (T) cytosine (C)

- RNA secendary structure Purine: adenine (A) guanosine (G)
 - Pyrimidines: uracil (U) cytosine (C)

The Cytoplasm

- <u>The global view</u>: the cytoplasm is densely populated.
- Only correctly folded proteins have longterm stability.

Some Comments

• Biochemistry

- The level of molecular details really depends on the question to be addressed.

- Structural biology
 - Provides critical insights into cellular processes.
 - Needs to be integrated with other approaches.

- Structural genomics aims to determine the primary and tertiary structures of all proteins of a given organism.

Questions?

Small Molecules

- Definition of small molecules is not firm.
- Can be natural or synthesized. Not a polymer.
- Low molecular weight permits fast permeation across membranes.
- Used to induce immediate functional perturbations.
- Important targets of pharmacology and chemical biology research.

	PERCENT OF TOTAL CELL WEIGHT	NUMBER OF TYPES OF EACH MOLECULE
Water	70	1
Inorganic ions	1	20
Sugars and precursors	1	250
Amino acids and precursors	0.4	100
Nucleotides and precursors	0.4	100
Fatty acids and precursors	1	50
Other small molecules	0.2	~300
Macromolecules (proteins, nucleic acids, and polysaccharides)	26	~3000

Table 2–2 The Approximate Chemical Composition of a Bacterial Cell

Small Molecules References

- B. R. Stockwell, <u>Exploring biology with small organic</u> <u>molecules</u>, Nature, 432:846,2004.
- S. L. Schreiber, <u>Small molecules: the missing link in the</u> <u>central dogma</u>, Nature Chemical Biology, 1:64, 2005.
- S. Ding, P. G. Schultz, <u>Small molecules and future</u> regenerative medicine, Curr. Top. Med. Chem., 5:383, 2005.

An Overview of Cell Biology Literature

- Journals
 - General purpose journals
 - Science
 - Nature
 - PNAS
 - Specialized journals
 - Cell
 - Journal of Cell Biology
 - Nature associated journals
- Commercial vs noncommercial journals
- Review journals and review articles

How to Read Cell Biology Papers (I)

- To be able to critically read and evaluate contemporary *biology* papers Why so critical?
- General guidelines
 - Fundamentally, it is about original data and ideas
 - Not that different from a mathematical proof: Logical coherence and rigor
- Highly stereotyped structures of biology papers
- Organization (I): biology papers are result-driven
 - Introduction: However, ...
 - Results: To..., we did ...
 - Discussion: We speculate ...

How to Read Cell Biology Papers

- Organization (II):
 - Every figure must tell
 - Logical flow: connection between result sections
- Our aims
 - To be able to effectively read papers in cell biology
 - To be able to effectively communicate cell biology research results

Process of Publication

- Journal selection
 - What are the messages: short vs long format
 - Usually several comparable journals to choose from Similar paper formats
 - Similar review standards
 - Keep a rational perspective: vanity journals
 - Keep doing good science, your record will show
- Submission and review process
 - Pre-submission inquiry: usually for vanity journals
 - Editorial review
 - External review
 - Outcome I: preliminary acceptance
 - Point-to-point response to reviews
 - Outcome II: rejection
 - Peer-review system not perfect but generally works

References

Petsko & Ringe New Science, 2004

Nelson & Cox W.H. Freeman, 2008

Dill & Bromberg, Garland Sciences, 2002

Project Assignment 1