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This document contains a description of the theory behind use of the rotating disk to 

generate a streaming potential.  There are two major sections.  In the first one, the theory 

of the parallel plate capillary is reviewed to provide background for understanding the 

rotating disk treatment. The second section contains the theory of the disk.  

 

Theory of the parallel plate capillary 

Understanding the theory of the parallel plate capillary is helpful for appreciating 

the somewhat more complicated theory underlying zeta potential measurement with the 

rotating disk; It is useful, therefore, to review the theory of the classical method for 

measuring zeta potential. The theory by which measured streaming potential measured in 

a parallel plate system is converted to zeta potential (neglecting surface conductivity) 

begins with the equation for flow between two parallel plates where the flow is one-

dimensional and laminar.  The velocity profile for fluid flow between two parallel plates 

separated by a distance h is  

vz = 6 < v >
y

h
−

y2

h2







where < v > ≡

−∆Ph2

12µL
                          [1] 

and y is a distance variable running from 0 to h. µ is liquid viscosity, ∆P is the pressure 

difference between outlet and inlet,  and L is the length of the flow channel. The surface 

current is calculated in general by integrating the local velocity with the local unbalanced 

charge density, according to  

jsz = vzρe

0

∞

∫ dz       [2] 

Including both sides of the channel, one uses Poisson's equation and integrates by parts to 

find 
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For a given value of z, the surface current depends on the pressure gradient, the gap h, 

and the reciprocal of viscosity.  One calculates the total surface current by multiplying 

the expression for js by the width W of the cell, so that  

Is =
∆Ph

µL
ε ζW       [4] 

Having an expression for the surface current, one must find next an expression for the 

potential distribution in the bulk electrolyte along which the streaming current is returned 

to close the circuit. 

The equation ib,n = −∇s ⋅ js  expresses the relationship between the normally 

directed bulk current and the surface divergence of the surface current.  Taking the 

divergence of the surface current, which is a constant, one finds that the normally 

directed bulk current is zero, which means that all gradients of potential normal to the 

surface vanish.  The consequence of this result is that one is required to solve only a one-

dimensional form of Laplace's equation for the electric potential in the bulk solution 

between the plates.  

d
2φ

dz 2 = 0⇒ φ = f + gz       [5] 

where f and g are constants to be determined. Taking φ to be zero when z = 0 at the inlet, 

one obtains the simple relationship that φ = g z. The total current flowing in the bulk 

solution parallel to the plates is given by ohm's law as 

Ibulk = −κ
dφ
dz

hW = −κghW .    [6] 

One closes the problem by stating the conservation of charge for this system, Ibulk + Is = 0.  

Inserting the results obtained above for the bulk and streaming currents into the charge 

conservation equation, one finds that  

−κghW +
∆Ph

µL
ε ζW = 0 ⇒ g =

∆P

κµL
εζ    [7] 

and hence the distribution of potential between the plates is given by 
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φ =
∆P

κµL
εζ z       [8] 

When z = L, one obtains an expression for the streaming potential measured by placing 

reference electrodes at either end of the flow channel.  

φs =
∆P

κµ
εζ  .      [9] 

Again, note that this equation applies only when surface conductivity is negligible. The 

streaming potential is independent of the length of the channel L and its height h, as long 

as the length is much greater than the height.  Measuring a streaming potential, one can 

invert this equation to find the zeta potential.  

 

Theory of streaming potential in the vicinity of a rotating disk 

A dielectric disk of radius a rotates in an infinite aqueous solution. Rotation of the 

disk generates radial flow with a velocity proportional to distance from the axis. Radial 

convection along the disk surface transports mobile ionic charge in the diffuse part of the 

electrical double layer, thereby creating a sheet of ionic current that flows both 

concentrically and radially outward along the disk surface. The convected radial current 

must return through the electrolyte to complete the circuit and conserve charge.   

The radial surface current jsr comprises current due to the imposed flow of 

electrolyte and current due to surface conductivity.  In the case of the disk, the effect of 

surface conductivity is negligible. The derivation of the surface current begins with 

jsr = vrρe

0

∞

∫ dz       [10] 

where vr is the local radial velocity and ρe is the charge density at any point in space. The 

radial velocity in the immediate vicinity of a rotating disk is given by 

vr =
0.51023Ω3/ 2

ν1/2 rz = γ rz      [11] 

We use this equation, Poisson's equation, and integration by parts to calculate the integral 

appearing in eq. 10.  Only the z component of Poisson's equation is included because the 

z variation of the electric field in the diffuse layer dominates the radial variation. 
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= −εγ rζ   [12] 

where ε is the dielectric constant, r is radial position, ζ is zeta potential, 

γ ≡ 0.51023 Ω3
/ν , Ω is the rotation rate in radians per second, and ν is the kinematic 

viscosity of the liquid.  Here the electric field at infinity and the potential at infinity are 

both zero. Thus the surface current due to convection of charge in the diffuse layer is 

proportional to the radial position and to the rotation rate raised to the 3/2 power.  The 

surface current flows radially outward along the disk surface and is contained within a 

few Debye lengths of the surface. The surface current density is positive for a negative 

zeta potential. 

The streaming potential arises in the bulk electrolyte because this region conducts 

the radial surface current jsr away from the periphery of the disk and returns it to the 

diffuse layer. The normal component of the current in the bulk solution at the disk's 

surface was derived from its relationship to the surface divergence of the surface current, 

i.e., iz =-∇s ⋅ js , yielding 

iz= 2 ε  γ  ζ.      [13] 

Equation 13 indicates that a uniform current density flows between the diffuse layer and 

the rest of the domain. When the surface current jsr is positive (for negative ζ), the bulk 

current density to the disk given by eq 13 is negative; current flows toward the disk for 0 

< r < a. In summary, a total surface current (for negative ζ ) of magnitude 

−2πεγζa2  enters the bulk solution at the disk's periphery and returns via the bulk solution 

to the diffuse layer with a uniform current density iz given by eq 13. 

Deriving an expression for the overall electric potential distribution in the bulk 

solution is the remaining task. According to the mechanism described in the previous 

paragraph, the potential at an arbitrary location is a superposition of a potential arising 

from the uniform flow of current to the disk and from a ring source of current at the 

periphery of the disk. The equation expressing the potential on such a disk, when the 

current density is a constant equal to the result presented in eq 13, is 

φd r , z( )κ
ε γ ζ a

= 2
J1 p( )

p
Jo

0

∞

∫ pr( )e− pz dp ,   [14] 
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where Ji represents Bessel functions; φd is the potential due to the disk; κ is the solution 

conductivity, and the overbars on r and z indicate that the coordinate is scaled by the disk 

radius, a.  

The surface current leaving the disk is a ring source at radius a. Consider a flat 

ring of radius r' and thickness dr' centered about the axis in the plane of the disk; the ring 

is a source of current density in flowing into the semi-infinite domain below the disk. The 

contribution of this ring to the electric potential φr (r, z)  is  

dφr (r,z) =
2 in dr'

4πκ z
2 + r'cosθ '−r( )2 + (r'sinθ ')

2[ ]1/2 dθ ' =
2

πκ
in (r')K(m)r' dr'

[z 2 + (r + r')2]1/ 20

2π

∫  , [15] 

in which K(m) is the complete elliptic integral of the first kind with 

m =
4rr'

z 2 + (r + r')2 and K(m) =
dα

(1−m sin2α )1/20

π / 2

∫  .  [16] 

The variable φr denotes the potential due to the ring, and the current density on the ring is 

in at r'. Here the ring is an infinitesimally thin source of current so that r' → a and indr'→ 

-aεγζ.    Furthermore,  m→
4ra

z 2 + (r + a)2  and [z
2 + (r + r')

2
]
1/ 2 → [z

2 + (r + a)
2
]
1/2

.  

Equation 15 becomes  

κ φr (r , z )

ε γ aζ
=
−2

π
K(m)

[z 2 + (r +1)2 ]1/2
  .    [17] 

Superimposing eqs 14 and 17, one obtains the overall potential distribution φ in the semi-

infinite domain, 

 

φ r , z( )κ
ε γ ζ a

=
φd r , z( )κ
ε γ ζ a

+
φr (r , z )κ
ε γ ζ a

= 2
J1 p( )

p
Jo

0

∞

∫ pr( )e− pz dp −
2

π
K(m)

[z 2 + (r +1)2 ]1/2
 .  

[18] 

 

Equation 18 permits calculation of the potential anywhere in the bulk electrolyte subject 

to several assumptions: (1) The domain is semi-infinite. (2) The spindle supporting and 

spinning the disk is taken as infinitesimally thin and frictionless with respect to the flow. 

(3) The plane z = 0 is a mirror plane, i.e., the upper surface of the disk is equivalent to the 

lower.  
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Equipotentials and current lines calculated with the aid of eq 18 appear in Fig. 2.   

The equipotentials correspond to constant values of κφ/aεγζ at intervals of 0.05. The zero 

of potential is the surface of rotation extending from r = 0.908a on the disk and flaring 

out to infinity. Potentials at radii smaller than the radius of this surface are positive, while 

potentials at radii larger than the radius of this surface are negative. The maximum 

potential is in the plane of the disk at the axis and the potential diverges to negative 

infinity in the plane of the disk at r = a where the ring source emits current to the bulk 

solution. The equipotentials are practically indistinguishable near the edge of the disk. 

Any two current lines enclose 4% of the total current. Streaming current emerges from 

the edge of the disk (r = a) and flows through the bulk solution back to the diffuse layer 

where it is distributed uniformly between r = 0 and r = a.  

The potential distribution appearing in Fig. 2 leads to conclusions about 

placement of reference electrodes. Positioning one reference electrode at the axis near the 

disk takes advantage of the insensitivity of potential to radial position there. One must, 

however, know accurately the distance of the reference electrode from the disk for 

absolute calculation of zeta from measured streaming potentials.  In the limit of small z, 

the streaming potential along the axis takes values approximately equal to  

φs =
2εγζa

κ
1−

z

a
−

1

2
z2

a
2 +1

 
  

 
  

1/ 2

 

 

 
 
 
 

 

 

 
 
 
 

      [19] 

If one knows the distance between the reference electrode and the sample, this equation 

can be used to find the correct factor representing the streaming potential at the position 

of the reference electrode.  

Placement of the other reference electrode near the disk at r = a is problematic 

because of the extreme gradients of potential. The best position for the second reference 

electrode is far from the disk where the potential is zero and not sensitive to position. 
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2a ζ 2a 

Figure 1. A rotating disk of diameter 2a in an infinite electrolytic solution. 

The lower surface of the disk has a zeta potential equal to ζ. (In the analysis 

it is also assumed that the upper surface has an equivalent ζ.) 
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0 

Figure 2.  Streaming potential (solid lines) and lines of current (dotted) in the 

vicinity of the disk. The equipotentials represent constant values of κφ /aεγζ 

shown at intervals of 0.05. The zero of potential is the surface of rotation 

extending from 0.908 radii on the surface of the disk out to infinity.  Values of 

κφ /aεγζ at radii smaller than the zero of potential are positive, while this 

quantity at radii larger than the zero of potential is negative. 4% of the total 

current flows between each line of current.  

 

0 
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Figure 3. The dependence of the streaming potential on position with 

respect to the disk. (a) radial position dependence at constant axial distance 

in the plane of the disk (z = 0) for the present calculation (solid line) and 

the previous calculation
1,2

 (dotted line).  (b) axial position dependence from 

the center of the disk. Comparison of the present result with the prior 

calculation demonstrates the origin of a factor of 2.33 discrepancy on the 

axis of the disk even though the profiles both cross zero and go through a 

minimum near the edge of the disk.  The streaming potential on the edge of 

the disk in the present calculation goes to negative infinity compared to a 

finite value in the previous calculation. 
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