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40. The black body spectrum, and how we see it (8 points)

1. Recall that jω(T ) = ~
(2πc)2

ω3

eβ~ω−1 is the frequency-resolved power radiated by a black body of temperature T per unit
area. Express this function in its alternative wavelength-resolved form, jλ(T ). Also, calculate j(T ) =

∫∞
0

dλ jλ(T ).
Hint: The transformation theorem for probabilities also works for densities that are not necessarily normalized to unity!

2. Find the values ω∗ (= 2πf∗) and λ∗ where jω and jλ have their maximum. (This will require you to numerically solve
two transcendental equations.) Now calculate λ∗f∗. Does the result surprise you?

3. We get the perceived brightness of light by multiplying its power with the luminous efficiency function (spectral sen-
sitivity) V (λ) of the human eye, which must be determined experimentally. The luminous flux density F (T ) is then

F (T ) = 683
lm
W
×
∫ ∞
0

dλ jλ(T )V (λ) with V (λ) ≈ e−(λ−λmax)
2/2δ2λ and

λmax = 555 nm
δλ = 43 nm . (1)

Plot the overall luminous efficacy, Elm(T ) = F (T )/j(T ), as a function of T ! (You need to do the integral numerically.)
4. White LEDs reach luminous efficacies in excess of 100 lm/W, with even better ones rapidly coming on the market. How

much more energy efficient are such LEDs compared to a typical incandescent light bulb operating at 2900K?

41. The simple and the not-quite-so-simple rigid rotator (12 points)

A simple rigid rotator has only rotational energy, and its Hamiltonian is given byH = 1
2IL

2, where L is the operator of angular
momentum and I is the moment of inertia.

1. Remind yourself (and the grader): what are the eigenvalues of L, and what are their degeneracies?
2. Write down the canonical quantum partition function Z of the rigid rotator, as well as its free energy F , energy U , and

specific heat c. All these expressions will contain terrible sums that you can’t do analytically. Don’t worry. But you can
make things look a wee bit nicer by defining the “rotational temperature” Trot =

~2

2IkB
.

3. Use your favorite numerical math package to plot c(T )/kB as a function of T/Trot for 0 ≤ T/Trot ≤ 3. Do this by
numerically summing up “sufficiently” many terms. Give an analytical explanation for the limit T →∞.

Now buckle up: the nuclear spins of a hydrogen molecule H2 can either be parallel, forming a spin-triplet of total spin 1,
or antiparallel, forming a spin singlet of total spin 0. The triplet state is called “orthohydrogen”, the singlet state is called
“parahydrogen”. Transitions between them are strongly suppressed by selection rules. Moreover, the fermionic nature of
protons imposes restrictions on the rotational states of (ortho/para)hydrogen: the fact that the spin state of orthohydrogen is
symmetric forces the wave function to be antisymmetric, and this means that the eigenvalues ` of the angular momentum
operator have to be odd. For parahydrogen, this reasoning shows that they have to be even instead.

4. Building on the calculations you have done in parts (1–3), write
down a formal expression (containing again yucky sums that
you don’t need to evaluate) for the (rotational) specific heat cpara
of pure parahydrogen. Consider the restrictions on `!

5. The same for pure orthohydrogen, cortho. Don’t forget to count
the nuclear triplet degeneracy!

6. Consider now a mixture in which ortho- and parahydrogen are
in equilibrium. This requires a “catalyst” to solve the prob-
lem that transitions between ortho and para are selection-rule-
suppressed. What is ceq of this equilibrium mixture?

7. Without that catalyst, H2 doesn’t easily equilibrate between ortho and para. At high temperature, orthohydrogen is three
times as likely as parahydrogen (reflecting the nuclear spin degeneracy), and this is called “normal hydrogen”. This ratio
stays if one (rapidly) cools hydrogen. Considering that, what now is the heat capacity of “normal hydrogen”, cnormal?

8. Plot the four theoretically calculated rotational specific heats for 0 ≤ T/Trot ≤ 3.5. By a careful comparison with the
experimentally measured rotational specific heat in the attached figure, determine the length of the hydrogen-hydrogen
bond! You may consider the mass of a hydrogen atom known, since this is very easy to measure in mass spectrometry.


