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1. Simpson’s paradox (6 points)

A college offers two majors (A and B), to which both male and female students apply. The fraction of male and female students

interested in major A is µA and φA, respectively, and to keep things simple, we assume that nobody applies to two majors.

Show that the following can happen: in both majors the acceptance probabilities fA and fB for women are larger than those

for men (mA and mB), and yet the overall acceptance rate for women is lower than that for men. Give a complete and precise

characterization of the circumstances under which this situation occurs!

2. Sick Bayes (5 points)

Consider a disease that exists with some small probability p in the general population. Assume that people can be checked for

the disease with a test that correctly picks it up with a (large) probability α (which is often called the “sensitivity” of the test).

Of course, any test also has a (hopefully small) false positive rate β. (Incidentally, 1− β is often called the “specificity” of the

test). If a random person gets tested positive, what is the probability of them having the disease? How does one have to design

such a test so that test-takers are not unnecessarily scared? Give an illustrative numerical example!

3. Characteristic functions and the amazing Central Limit Theorem (9 points)

The Fourier transform p̃(k) of a probability density (henceforth: “p-density”) p(x) is also called the “characteristic function”:

p̃(k) =
〈

eikx
〉

=

∫

dx p(x) eikx
[

and hence: p(x) =
1

2π

∫

dk p̃(k) e−ikx

]

. (1)

1. Let X be a random variable whose p-density pX(x) has moments µn = 〈Xn〉. If these moments µn exists, prove that

µn = i−n

[

∂n

∂kn
p̃X(k)

]

k=0

. (2)

2. If p̃aX(k) is the characteristic function of the random variable aX (with some a ∈ R), show that p̃aX(k) = p̃X(ak).

3. Let X and Y be two independent random variables with p-densities pX(x) and pY (y). Let pX+Y (z) be the p-density of

Z = X + Y . Prove that pX+Y (z) =
∫

dx pX(x) pY (z − x) and that p̃X+Y (k) = p̃X(k) p̃Y (k).

4. Let X1, . . . , Xn be n independent random variables with identical distribution pX(x), which has mean µ1 and finite

variance σ2 = µ2 − µ2
1. Consider the centered and normalized random variables Yi = (Xi − µ1)/σ (which obviously

have zero mean and unit variance) and the new (and seemingly curiously normalized) sum random variable

Zn =
1√
n

n
∑

i=1

Yi =
X1 +X2 + · · ·+Xn − nµ1

σ
√
n

. (3)

If p̃Zn
(k) is the characteristic function of (the p-density of) Zn, show that in the limit of large n you get

lim
n→∞

p̃Zn
(k) = e−

1

2
k2

and hence pZn
(x) −→ 1√

2π
e−

1

2
x2 ≡ G(0,1)(x) . (4)

Hint: The proof follows swiftly from what you’ve worked out so far; you will also need a cute representation for the

exponential function: limn→∞[1 + x/n+ o(x/n)]n = ex, where o(z) is any term that satisfies limz→0 o(z)/z = 0.

This is (a version of) the amazing Central Limit Theorem: The distribution of the
√
n-normalized sum of the centered Xi becomes a Gaussian with

zero mean and unit variance, independent of the actual distribution of the Xi (as long as their variance is finite). It also implies that for increasing n

the p-density of the arithmetic mean, Xi = 1
n
(X1 + · · · + Xn) = µ + σ

√

n
Zn converges against, G(µ,σ/

√

n)(x), a Gaussian centered around µ

with variance σ/
√
n. Hence, the error of the mean also becomes Gaussian and decreases like 1/

√
n. The Central Limit Theorem explains why the

Gaussian distribution is “normal”: It naturally emerges once you do averaging. This is also why it appears all over the place.


