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During the lecture the question came up how to properly define the wave vectors in
the Debye solid calculation. Is it π

L times an integer, or 2π
L times an integer? I mumbled

about “octants” and “proper number of states”, but as Keegan pointed out, the spacing
of wave vectors in Fourier space should be 2π

L , irrespective of what we think about the
total number of modes we wish to include.

In these notes I briefly show, how we can make the 2π
L case work out consistently.

First, recall that our dispersion relation (in one dimension) was

ω(k) = 2ω̃
∣∣∣ sin ka

2

∣∣∣ ka�1
≈ ω̃|ka| = v|k| , (1)

where v is the phase velocity. We plotted this in the first Brillouin zone, which ranged
from k = −π

a to k = +π
a .

Let us first make sure we understand the spacing of modes. With N particles in one
dimension, we need N modes. The width of our Brillouin zone is 2π

a , and so the spacing
of individual wave vectors along that line is 2π

a /N = 2π
L since N = L/a.

So far, so good. But there’s a slight complication we should be clear about: each
mode has a complex amplitude, and that gives it two degrees of freedom. Doesn’t
that double the number of independent modes? No, because the Fourier amplitudes
satisfy x̃−k = x̃∗k, and so the mode amplitudes at negative k vectors are fully specified
if we know the ones at positive k vectors. More precisely, we can indeed restrict to
non-negative wave numbers and find the following modes:

1 mode
2 modes
1 mode

 for


n = 0
n ∈ {1, 2, . . . , N2 − 1}
n = N

2

. (2)

Check that these are indeed N modes. Alternatively, we can take the lazy view that
there is one real amplitude per wave vector, but also count all the amplitudes at negative
wave vectors. We then get exactly one mode for each of the following numbers:

n ∈
{
− N

2
+ 1,−N

2
+ 2, . . . ,−2,−1, 0, 1, 2, . . . ,

N

2
− 1,

N

2

}
. (3)

Observe that this will also give us exactly N modes. Even more importantly, we realize
that in both cases the minimal spacing between different wave vectors is 1 in n-space
and 2π

L in k space. So: same spacing, same numbers, different degeneracies.
Since the second way of counting is technically easier, we will use it now.

Let’s upgrade to three dimensions and adopt Debye’s suggestion of (1) restricting
to the linear piece of the dispersion relation, ω(k) = v|k|, (2) a spherical Brillouin



zone in ~k-space of radius kD that (3) contains exactly 3N modes. To calculate their
number, we sum them up or, more easily, integrate them up by first smearing out the
delta-peaks. Since the spacing of modes along each dimension is 2π/L, the volume
in three-dimensional ~k-space belonging to each delta-peak is (2π/L)3, and hence the
density of states in ~k-space is 1/(2π/L)3 = (L/2π)3. But this is a constant, and so
the volume integral over the density is just the density times the volume:

3

∫
|~k|<kD
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× 4π

3
k3
D . (4)

Demanding that this equals 3N leads to

kD =

(
6π2N

L3

)1/3

. (5)

We can now calculate the average energy by multiplying the density of states in ~k-space
by the average energy per mode and integrating over the Debye sphere:

U = 3

(
L

2π

)3 ∫
|~k|<kD

d3k
h̄v|~k|

eβh̄v|~k| − 1
= 3

(
L

2π

)3 ∫ kD

0

dk 4πk2 h̄vk

eβh̄vk − 1
. (6)

Using the substitution x := βh̄vk, and hence dx = βh̄v dk, we get

U = 12π

(
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2π

)3
1

β(βh̄v)3

∫ βh̄vkD
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15
= L3 3π2

30(h̄v)3
(kBT )4 . (7)

This is the result we also derived in the lecture, on conceivably more dubious grounds.
You can easily verify that the T →∞ asymptotics also checks out, giving 3NkBT .

As a final comment: in three dimensions we claimed that we just get more modes,
but we can re-use the dispersion relation derived in one dimension. That is of course
not actually true. Specifically, there is no reason to believe that the transverse and
the longitudinal modes have the same dispersion relation. However, it turns out that
both of them are still linear at small k and so the only relevant difference is that the
phase velocities for these two classes of modes are different, let’s call them v⊥ for the
transverse modes and v|| for the longitudinal ones. This then leads to the following
fairly obvious generalization of our result:

u =
U

V
=

π2

30 h̄3
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)
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