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1 Introduction

F This is a rough outline to accompany lectures. It is not intended to be self-contained.
There is a hierarchy of bullets: �, F, •, ◦, –. If they don’t make sense to you, ignore them.

F References:
CQT = R. B. Griffiths, Consistent Quantum Theory (Cambridge 2002)
QCQI = M. A. Nielsen and I. L. Chuang, Quantum Computation and Quantum Information,
(Cambridge, 2000)

F Why the interest in quantum information?

• FACTORING. Peter Shor, 1994.

• CIPHERING. Quantum cryptography: Charles Bennett and others.

• UNDERSTANDING. Founding fathers of quantum mechanics (QM) left a lot of ques-
tions unsettled. Will quantum information help solve them?

F This is a rough outline to accompany lectures. It is not intended to be self-contained.
There is a hierarchy of bullets: �, F, •, ◦, –. If they don’t make sense to you, ignore them.

2 Qubits and Hilbert Space

� Information is an abstract concept. But in the real world information requires a
physical representation:

F Bit is basic unit of classical information. Quantum counterpart is a qubit or 2-
dimensional complex Hilbert space.

� Hilbert space H: Complex vector space with inner product
– See CQT Ch. 3, QCQI Sec. 2.1.

• Vectors: |ψ〉, |0〉, |1〉 are called “kets.”
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• Scalars: Complex numbers such as c = 1.2 + 3i; complex conjugate: c∗ = 1.2 − 3i

• Addition of kets, multiplication of kets by scalars: e.g., |ψ〉 = 2|0〉 + (1 + i)|1〉
• Dual space vector 〈ψ| =

(

|ψ〉
)†

is referred to as a “bra.” The dagger † operation is

antilinear, e.g.
(

2|0〉 + (1 + i)|1〉
)†

= 2〈0| + (1 − i)〈1|, where note that i becomes −i. For
more on †, see (2.13) and following.

• Inner product of |φ〉 with |ψ〉 is written 〈φ|ψ〉, a “bra c ket”; it is a complex number.

〈φ|ψ〉 = 〈ψ|φ〉∗ (2.1)

where ∗ denotes complex conjugate.

• |φ〉 is orthogonal to |ψ〉, and vice versa, if 〈φ|ψ〉 = 0 (equivalent to〈ψ|φ〉 = 0, see (2.1)).

• Norm: ‖ψ‖2 = 〈ψ|ψ〉 ≥ 0. Normalized vector: ‖ψ‖ = 1.

• Orthonormal basis |j〉, j = 1, 2, . . . d for a d-dimensional Hilbert space:

〈j|k〉 = δjk =

{

1 if j = k,

0 if j 6= k.
(2.2)

◦ Can expand any ket in such a basis:

|ψ〉 = c0|0〉 + c1|1〉 + · · · ; cj = 〈j|ψ〉. (2.3)

F Bloch sphere or spin-1/2 representation of qubit
– See CQT, pp. 50,51

• Every
|ψ〉 = α|0〉 + β|1〉 (2.4)

is associated with a direction in space w and a ket |w+〉 determined by β/α. Note: |w−〉
corresponds to direction −w.

|z+〉 = |0〉, |z−〉 = |1〉, (2.5)

F Physical interpretation of kets.

• |ψ〉 and c|ψ〉 for c 6= 0 mean exactly the same thing, the physical state is associated
with the ray {c|ψ〉}, |ψ〉 fixed, c any complex number.

• |φ〉 and |ψ〉 refer to distinct or distinguishable physical states it they are orthogonal,
〈φ|ψ〉 = 0.

• 〈ψ|φ〉 6= 0, but |ψ〉 is not a multiple of |φ〉. Two such states are said to be nonorthogonal,
or incompatible, or noncomparable.

◦ No measurement can (reliably) distinguish them

◦ One cannot ascribe both properties to the same system at the same time

◦ Main conceptual difficulties of quantum mechanics (and main power of quantum com-
putation, cryptography) are associated with the possibility of incompatible states.
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� Operators

F Operators are linear maps of H to itself

|ω〉 = A
(

b|ψ〉 + c|φ〉
)

= bA|ψ〉 + cA|φ〉 (2.6)

• Product of operators defined by:

(AB)|ψ〉 = A
(

B|ψ〉
)

= AB|ψ〉. (2.7)

• In general AB 6= BA. When AB = BA one says that A and B commute. Otherwise
they do not commute. The commutator

[A,B] := AB −BA (2.8)

of two operators is zero if and only if they commute.

F Dyad, e.g. |χ〉〈ω|, defined by:
(

|χ〉〈ω|
)

|ψ〉 = |χ〉〈ω|ψ〉 =
(

〈ω|ψ〉
)

|χ〉. (2.9)

• Completeness relation. If {|j〉} is an orthonormal basis, then

I =
∑

j

|j〉〈j|, (2.10)

• Expansion of arbitrary operator A in orthonormal basis dyads:

A =
∑

j

∑

k

〈j|A|k〉 · |j〉〈k|. (2.11)

◦ The 〈j|A|k〉 are matrix elements in Dirac notation; the usual notation would be Ajk.
– For more about column, row vectors and matrices: CQT Sec. 3.6.

• According to (2.11), an operator is uniquely determined by its matrix elements in an
orthonormal basis. It is also uniquely determined by its action on every member of an
orthonormal basis.

• When the operator A refers to a qubit, the standard way of writing the matrix using
the computational or standard basis is (note the order of the elements):

(

〈0|A|0〉 〈0|A|1〉
〈1|A|0〉 〈1|A|1〉

)

(2.12)

F Adjoints and dagger (†) operation. Examples:
(

|ψ〉
)†

= 〈ψ|,
(

〈ψ|
)†

= |ψ〉, (2.13)
(

b|ψ〉 + c|φ〉
)†

= b∗〈ψ| + c ∗ 〈φ|, (2.14)
(

|ψ〉〈ω|
)†

= |ω〉〈ψ| (2.15)

〈j|A†|k〉 =
(

〈k|A|j〉
)∗
, (2.16)

(

aA+ bB
)†

= a∗A† + b∗B†, (2.17)

(AB)† = B†A†. (2.18)
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Operator A† is the adjoint of A

� Classes of operators: Hermitian, projectors, positive, unitary

F A = A† defines a Hermitian operator. In quantum theory physical variables (energy,
momentum, angular momentum, etc.) are represented by Hermitian operators.

• Quantum physical variable A has well-defined value in state |ψ〉 if and only if |ψ〉 is an
eigenstate of A:

A|ψ〉 = a|ψ〉, (2.19)

in which case the value of A in |ψ〉 is its eigenvalue a.

◦ A = A† implies a is a real number.

◦ If |ψ〉 is not an eigenstate of A, then the value of A in the state |ψ〉 is undefined or
meaningless : quantum theory does not assign it any meaning.

• Spectral theorem for Hermitian operators: A = A† implies there is an orthonormal
basis {|νj〉} (which depends on A) such that

A =
∑

j

aj|νj〉〈νj|, (2.20)

where the |νj〉 are eigenvectors of A, and the aj are the corresponding eigenvalues. Equiva-
lently, the matrix of A in this basis is diagonal:

〈νj|A|νk〉 = ajδjk. (2.21)

• Extended spectral theorem. Let A,B,C, . . . be a collection of Hermitian operators
on the same Hilbert space, and suppose that each operator commutes with every other
operator in the collection. Then there is an orthonormal basis {|νj〉}, which depends upon
the operators in the collection, such that each operator has a representation in the form
(2.20), but with different eigenvalues. E.g.,

B =
∑

j

bj|νj〉〈νj|, (2.22)

and similarly for C, etc.

◦ In the state |νj〉 the physical variable A has the value aj, B has the value bj, etc.

◦ In classical mechanics all physical variables (energy, momentum, etc.) have well-defined
values, but in quantum mechanics this is no longer case. There have been various attempts to
make quantum theory look more classical by supplementing the quantum Hilbert space with
additional “hidden variables.” The best known effort in this direction is Bohmian mechanics,
based upon the ideas of David Bohm. There is no experimental evidence supporting the
existence of such variables, and postulating them leads to a more complicated theory with
mysterious undetectable nonlocal influences.

F Projector (orthogonal projection operator) P is Hermitian and idempotent: P = P †

and P 2 = P .
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• Its eigenvalues are either 0 or 1.

◦ Examples include identity I, zero operator 0: for all |ψ〉, I|ψ〉 = |ψ〉, 0|ψ〉 = 0.

◦ More interesting example: For normalized |ψ〉, the dyad |ψ〉〈ψ| is a projector.

◦ If |φ〉 and |ψ〉 are normalized states which are orthogonal to each other,

P = |φ〉〈φ| + |ψ〉〈ψ| (2.23)

is a projector.

• Geometrical property of projector: it projects a vector in a “perpendicular” manner
onto a subspace.

• A projector represents a physical property of a system that can be true or false. E.g.,
|ψ〉〈ψ| is the property that the system is in the state |ψ〉.

• The physical properties corresponding to two projectors P and Q are said to be com-

patible if and only if P and Q commute, PQ = QP . Otherwise they are incompatible.

◦ It does not make sense to ascribe two incompatible properties to a single quantum
system at the same time. E.g., for a spin-half particle, saying that Sx = +1/2 AND Sz =
+1/2 is meaningless. See the discussion in CQT Sec. 4.6.

F A positive (positive semi-definite) operatorR is a Hermitian operator with the property
that all of its eigenvalues are positive or 0.

• An alternative (very useful) characterization: R is positive if and only if 〈ψ|R|ψ〉 is
real and nonnegative for every |ψ〉 in the Hilbert space.

◦ Examples include projectors, density operators (discussed later).

F A unitary operator U is defined by (CQT Sec. 7.2):

U †U = I = UU †. (2.24)

◦ In a finite-dimensional vector space each equality implies the other, so one need only
check one of them, say UU † = I, to see if U is unitary.

• Think of U as a matrix. The first equality in (2.24) means that the columns of U ,
thought of as column vectors, make up an orthonormal basis of H. The second equality is
the same statement for the rows.

• A unitary operator preserves inner products: if |ψ ′〉 = U |ψ〉 and |φ′〉 = U |φ〉, then
〈φ′|ψ′〉 = 〈φ|ψ〉. In particular, the norm is preserved, ‖ψ′‖ = ‖ψ‖. Thus a unitary operator
“preserves lengths,” so it is analogous to a rotation.

• A unitary operator maps an orthonormal basis to another orthonormal basis, and in a
finite-dimensional space this is a sufficient as well as necessary condition, so it is a convenient
way to show that an operator is unitary.

3 Composite systems and tensor products

� In quantum theory the Hilbert space of a composite system (such as two qubits) is the
tensor product of the Hilbert spaces for the subsystems.

5



– Composite systems, tensor products are discussed in CQT Ch. 6, QCQI Sec. 2.1.7

F For two subsystems, H = A⊗B has dimension d = da ·db, where da, db are dimensions
of A, B. Let {|aj〉} and {|bp〉} be orthonormal bases. Any |ψ〉 in H can be written in the
form

|ψ〉 =
∑

j

∑

p

γjp

(

|aj〉 ⊗ |bp〉
)

(3.1)

for a suitable choice of complex coefficients {γjp}.
• Multiplication using ⊗ satisfies the usual distributive laws:

(

|a〉 + |a′〉
)

⊗
(

|b〉 + |b′〉
)

= |a〉 ⊗ |b〉 + |a〉 ⊗ |b′〉 + |a′〉 ⊗ |b〉 + |a′〉 ⊗ |b′〉, (3.2)

and scalar constants (complex numbers) can always be placed at the left:

(

c|a〉
)

⊗ |b〉 = |a〉 ⊗
(

c|b〉
)

= c
(

|a〉 ⊗ |b〉
)

= c|a〉 ⊗ |b〉, (3.3)

F Bra vectors are formed from kets using the dagger operation †:

(

|a〉 ⊗ |b〉
)†

= 〈a| ⊗ 〈b|;
(

〈a| ⊗ 〈b|
)†

= |a〉 ⊗ |b〉 (3.4)

◦ Note that the order a to the left of b is not changed by the dagger operation; this is an
exception to the “reverse the order” rule.

• Using (3.4) plus the fact that † is anti linear, one sees that if |ψ〉 is given by (3.1), then

〈ψ| =
∑

j

∑

p

γ∗jp
(

〈aj| ⊗ 〈bp|
)

(3.5)

F States in H of the form |a〉 ⊗ |b〉 are product states; all others are entangled states.

• Notation. |a〉 ⊗ |b〉 is often abbreviated to |a〉|b〉, or even to |ab〉 when the context
makes plain what the symbols mean. Sometimes inserting an ⊗ is useful because it makes
things clearer.

F Schmidt decomposition. Any |ψ〉 in A⊗ B can be written as

|ψ〉 =
∑

j

λj|âj〉 ⊗ |b̂j〉, (3.6)

where {|âj〉} and {|b̂p〉} are special bases which depend upon the |ψ〉 that one is considering,
and these bases can in addition be chosen so that the {λj} are nonnegative real numbers.

F Physical interpretation: Product state |a〉 ⊗ |b〉 has the meaning that A has the
property |a〉 and B the property |b〉. For an entangled state one cannot assign definite
properties to A and B; they are in some sense correlated.

• Consider the case of two qubits, and assume that

|ψ〉 = α|00〉 + β|11〉, (3.7)
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with α 6= 0, β 6= 0. One can show that the only projectors on A that commute with
P = |ψ〉〈ψ| are I and 0, so in this case it is not possible to say that the composite system
possesses property P and that the subsystem A possesses any nontrivial property.

◦ We shall see later (Sec. 4) that if |ψ〉 is thought of not as representing an actual physical
property, but instead as a pre-probability, then it does make sense to talk about properties
of the separate subsystems A and B.

F Identical particles. In quantum mechanics the tensor product space for identical
particles is complicated, because of symmetry requirements. We will ignore these because
usually we deal with quantum particles in separate locations. In other situations one can
get away with treating the particles as if they were nonidentical by introducing fictitious
“exchange interactions.”

� Operators on tensor products

F Product operators A⊗B act in the following way:

(

A⊗B
)(

|a〉 ⊗ |b〉
)

=
(

A|a〉
)

⊗
(

B|b〉
)

. (3.8)

◦ One can use linearity and (3.1) to extend this to the action of A ⊗ B on any |ψ〉 in
A⊗ B.

• Any operator on A⊗B can be written as a sum of product operators, so (3.8) suffices
to define the action of any operator on any state of A⊗ B.

• A dyad constructed from two product states is a product operator. Note how one
rearranges the terms to make this explicit:

(

|a〉 ⊗ |b〉
)(

〈a′| ⊗ 〈b′|
)

=
(

|a〉〈a′|
)

⊗
(

|b〉〈b′|
)

= |a〉〈a′| ⊗ |b〉〈b′| (3.9)

F Adjoint:
(

A ⊗ B
)†

= A† ⊗ B†, and extend to other cases using the fact that † is
antilinear. Note that the order of A and B does not change.

F Note that A ⊗ I is often written as A if it is obvious that the operator A refers to
subsystem A; similarly I ⊗B is often written as B. This sometimes causes confusion.

F Products of product operators:

(A⊗B)(A′ ⊗B′) = AA′ ⊗BB′. (3.10)

� Example of two qubits.

F We write product states |a〉 ⊗ |b〉 in the abbreviated form |ab〉. The computational
(standard) basis of the two qubit system is formed by the four states

|00〉, |01〉, |10〉, |11〉. (3.11)
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• Matrices (and column/row vectors) are written using these basis elements in (binary)
numerical order, thus for an operator R:









〈00|R|00〉 〈00|R|01〉 〈00|R|10〉 〈00|R|11〉
〈01|R|00〉 〈01|R|01〉 〈01|R|10〉 〈01|R|11〉
〈10|R|00〉 〈10|R|01〉 〈10|R|10〉 〈10|R|11〉
〈11|R|00〉 〈11|R|01〉 〈11|R|10〉 〈11|R|11〉









. (3.12)

◦ In the case of a product operator R = A ⊗ B one can think of the 4 × 4 matrix as
consisting of four 2×2 blocks obtained by replicating the B matrix 4 times, and multiplying
each by the corresponding matrix element of A.

F The following entangled Bell states frequently arise in discussions of two qubits:

|B0〉 =
(

|00〉 + |11〉
)

/
√

2,

|B1〉 =
(

|01〉 + |10〉
)

/
√

2,

|B2〉 =
(

|00〉 − |11〉
)

/
√

2,

|B3〉 =
(

|01〉 − |10〉
)

/
√

2,

(3.13)

◦ There is no standard notation for denoting a Bell state and sometimes it is convenient
to use a different choice of phases. See p. 25 of QCQI for a slightly different notation.

• The states (3.13) form an orthonormal basis of the 2 qubit space.

• The state |B3〉 is the spin singlet state used by Bohm in discussing the Einstein-
Podolsky-Rosen paradox, and for this reason is sometimes called an “EPR” state, though
that term is also sometimes used for other Bell states.

• Physical interpretation. One can think of |B0〉 as “something like” a classical situation
in which two bits, a and b are either both 0 with probability 1/2, or both 1 with probability
1/2. But there is no really good classical analogy for an entangled quantum state.

� Tensor products of three or more spaces. For the most part these are obvious gener-
alizations of the case of two spaces. Exception: There is no (satisfactory) generalization of
the Schmidt decomposition (3.6) to three or more spaces.

F The space H = A⊗ B ⊗ C can be thought of as the tensor product of A⊗ B with C,
or of A⊗ C with B, etc.

• A⊗B⊗C has an orthonormal basis {|aj〉 ⊗ |bp〉 ⊗ |cs〉} if {|aj〉}, {|bp〉}, and {|cs〉} are
orthonormal bases of A, B, and C.

• The dimension d of A⊗B⊗C is the product of the dimensions of the factors: da ·db ·dc.

4 Unitary dynamics and quantum circuits

F See CQT Ch. 7, QCQI Secs. 2.2.2, 4.2, 4.3.
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F In general the time development of a quantum system is a stochastic (i.e., random)
process governed by probabilities. However, there is also a deterministic unitary dynamics
which is of interest in itself, and is also used to calculate the probabilities for the stochastic
dynamics.

� Schrödinger equation

i~
d

dt
|ψt〉 = H|ψt〉, (4.1)

where t is the time, H = H† the Hamiltonian or energy operator.

F Time development operators T (t′, t). Any solution |ψt〉 to Schrödinger’s equation
satisfies:

|ψt′〉 = T (t′, t)|ψt〉 (4.2)

for any pair of times t′ and t.

F Properties of the time development operator(s) T (t′, t):

T (t, t) = I (4.3)

T (t′′, t) = T (t′′, t′)T (t′, t) (4.4)

T (t, t′) = T (t′, t)† = T (t′, t)−1 (4.5)

where t, t′, t′′ are any three times, and T (t′, t)−1 is the inverse of the operator T (t′, t). An
operator whose adjoint is its inverse is a unitary operator.

F See the discussion of unitary operators in Sec. 2

� In studies of quantum information and computation, a unitary time development
operator is often thought of, or represented by, a quantum circuit.

F One qubit circuits

• Horizontal line represents time increasing from left to right. One qubit gate U means
that starting state |ψ〉 is mapped to U |ψ〉.

• The general form of U for one qubit is worked out in QCQI Sec. 4.2.

• Some commonly used 1-qubit gates represented by matrices in the form (2.12):

X =

(

0 1
1 0

)

, Y =

(

0 −i
i 0

)

, Z =

(

1 0
0 −1

)

, H =
1√
2

(

1 1
1 −1

)

. (4.6)

◦ The first three are the well-known Pauli matrices, also written σx, σy, and σz, while H
is the Hadamard transformation.

◦ The X gate is also called a NOT or bit flip since X|0〉 = |1〉 and X|1〉 = |0〉, analogous
to the NOT gate in a classical circuit.

F Two-qubit circuits are drawn with two horizontal lines representing the two qubits,
together with various gates which can be one-qubit or two-qubit gates.

• Example: controlled-not = CNOT = controlled-X gate whose action is:

|00〉 7→ |00〉, |01〉 7→ |01〉, |10〉 7→ |11〉, |11〉 7→ |10〉, (4.7)
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where |ab〉 = |a〉 ⊗ |b〉; the a qubit is the upper line, b qubit the lower line in the circuit.
|ω〉 7→ |τ〉 means |τ〉 = T |ω〉, where T is the unitary corresponding to the gate.

◦ Since the X gate, (4.6), performs the NOT operation, a controlled-not is the same as
a controlled-X gate.

◦ A compact way of writing (4.7) is (with X0 = I):

T |jk〉 = |j〉 ⊗Xj|k〉, (4.8)

◦ One can also write

T = [0] ⊗ I + [1] ⊗X; [0] = |0〉〈0|, [1] = |1〉〈1| (4.9)

• Controlled-U gate, where U is any one-qubit unitary: replace X with U in (4.8) or
(4.9).

◦ Warning! In the case where a one-qubit U amounts to multiplying by a complex number
c = eiϕ of unit modulus, it has no physical effect. However, a controlled-U of this form is
not trivial; take a look at the case c = −1.

F General quantum circuits for any number of qubits are constructed in a similar way.

• Note that time moves from left to right, so the the unitary transformation produced by
the complete circuit is obtained by writing the product of the unitaries for individual gates
in reverse order.

◦ Example: 2-qubit circuit with U applied to a, followed by CNOT, followed by V applied
to b yields (I ⊗ V ) · CNOT · (U ⊗ I).

F Any unitary transformation on n qubits can be carried out with a circuit employing
suitable 1-qubit gates along with CNOT gates. (A large number may be required.)

• A unitary on 2 qubits requires at most 3 CNOT gates

F In many proposals for a physical realization of a quantum circuit, the 2-qubit gates
are more difficult to construct than 1 qubit gates.
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