Static Equilibrium

Robert B. Griffiths Version of 24 August 2009

- \star Static equilibrium for a rigid body.
- Sum of forces must be zero:

$$\sum_{j} \boldsymbol{F}_{j} = \boldsymbol{0} \tag{1}$$

• Sum of torques must be zero:

$$\sum_{j} \boldsymbol{N}_{j} = \boldsymbol{0}; \quad \boldsymbol{N}_{j} = \boldsymbol{r}_{j} \times \boldsymbol{F}_{j}$$
⁽²⁾

 \star Note that r_j depends upon choice of origin of coordinates. See exercise.

 \Box Exercise. Show that the choice of origin used for calculating the torques does not matter as long as the sum of the forces is zero.

 \Box Exercise. A ladder leaning against the wall makes an angle θ with the floor. Show that if the floor is frictionless the ladder cannot be in static equilibrium for $0 < \theta < 90^{\circ}$. What is the minimum coefficient of static friction μ_s for which the ladder will be in equilibrium?

 \Box Exercise. A diving board of total length 5 m and mass 30 kg is resting on a stand at one edge of a swimming pool. Assume the stand has a width of 1 m and the board is bolted to the stand 5 cm from the edge of the stand furthest from the swimming pool. Estimate the force the bolts are exerting on the board if a diver of mass 70 kg is standing on the end over the water.

 \Box Exercise. A tripod carrying a video camera of mass 5 kg is placed on a smooth floor. Assume each leg of the tripod is of length 2 m and makes an angle of 30° with the vertical, and the total mass of the legs is 1 kg. What force, magnitude and direction, does the floor exert on each leg? Is the answer unique?

 \Box Exercise. Assume that for the previous exercise the floor is not perfectly smooth, so frictional forces may be present. What can you say about them?