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The two branches of the hyperbola shown in the accompanying figure are solutions to
the equation

x2/a2 − y2/b2 = 1, (1)

and can be represented parametrically as

x = ±a cosh τ, y = b sinh τ (2)

for −∞ < τ < ∞; − refers to the curve on the left, + to the one on the right.
The alternative polar representation employs the focus at x = −ǫa and y = 0, and takes

the form
r =

α

ǫ cos θ + 1
, r̂ =

α

ǫ cos θ̂ − 1
(3)

for the branches on the left and right, respectively, with

ǫ2 = 1 +

(

b

a

)

2

= 1 +
2El2

µk2
. (4)

Also note that
a =

α

ǫ2 − 1
, b =

α√
ǫ2 − 1

, (5)

and

E =
k

2α
(ǫ2 − 1) =

k

2a
, (6)

where k > 0 for either the attractive (−k/r2) or repulsive (+k/r2) case.
If the attractive center is at the left focus it is the left branch of the hyperbola that is of

physical relevance for an attractive potential (gravity or opposite electric charges), whereas
the right branch is relevant for a repulsive potential (charges of the same sign).

The asymptotes are indicated by dashed lines, and each focus is a perpendicular distance
b from both asymptotes. In scattering theory b is called the impact parameter. The slopes
of the asymptotes are ±b/a
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