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1 Introduction

These notes are intended to supplement, and in one instance correct, the material on Lagrangian and
Hamiltonian formulations of mechanics found in Thornton and Marion Ch. 7.

2 Partial derivatives

% When there are several independent variables it is easy to make mistakes in taking partial derivatives.
The fundamental rule is: always know which set of independent variables is in use, so that you are sure
which are being held fixed during the process of taking a partial derivative.

% A simple example will illustrate the problems that await the careless. Start with
flr,y) =22 +y; Of/0r=2. (1)
But suppose we prefer to consider f as a function of x and z = x + y. Then

flz,2) =x+2 0Of/0x=1. (2)

e How can we avoid drawing the silly conclusion that 1 = 2?7 In particular, is there some helpful notation
that will warn us? Indeed, there are (at least) two approaches to difficulties of this sort.

e Approach 1. Never use the same symbol f for two different functions. That is, f(-,-) should always in
a given discussion refer to a well-defined map from two real arguments to a real number. You give me the
first and second arguments of f as two real numbers, and I will give you back another real number which I
have looked up in a table. E.g., f(0.2,1.7) is always equal to 2.1. Period.



— In approach 1, we would never be so careless as to write down both (1) and (2), because the first tells
us that f(1,0) = 2 and the second that f(1,0) = 1, and nonsense gives rise to nonsense. What we should
have done is to write f in place of f in (2), and then there is no problem when 0f/0x is unequal to df /0.

e Approach 2. Approach 1 is not popular with physicists, though perhaps it should be. The reason
is that the symbols which occur in the equations of physics tend to refer to specific physical quantities.
Thus in thermodynamics E (or U) refers to energy, T to temperature, V' volume, P pressure, and so forth.
Sometimes it is convenient to think of F as a function of 7" and V', and sometimes as a function of 7" and
P, and sometimes as a function of other things. The habit of the physicist is to identify which function is
under discussion by giving appropriate labels to the arguments. Thus E(T,V) is not the same function as
E(T, P), and it is obvious (to the physicist) which is which, and if he sometimes writes F(V,T') instead of
E(T,V), what is wrong with that?

o Nothing is wrong with this approach, but when you write 0E/0T, what do you mean by it? Are you
thinking of E(T,V) or E(T, P)? The two partials are not the same (except in special cases), and how are
we to avoid confusion?

% One standard way to avoid confusion is to use subscripts. Thus

(o). ®

means the partial derivative of energy with respect to temperature while the volume is held fixed. Or, to
put it in other terms, the labels T and V', which told us which function we were referring to when writing
E(T,V) are again evident, one as the 9T denominator and the other as a subscript.

e The subscript notation is effective but cumbersome. E.g., suppose the physical chemist is concerned

with a system in which there are Ny moles of species 1, Ny moles of species 2, ... N, moles of species r.
Then a partial derivative of E(T,V, Ny,...N,) might be written as
oF
(5%) (@
3/ T,V,N1,...N;_1,Nj41...N,

which is perfectly clear, but takes a lot of time to write down.
% So in practice what happens is that the subscript list is often omitted, and which other variables are
being held constant has to be determined from the context.

e Thus 0L/0¢; in TM always means the variable list is g1, ¢, ... ¢s,41,¢2, . . . §s, t, because by convention
the Lagrangian L depends on these variables. We could make it depend on some other set of variables, but
then it would be a good idea to warn people, perhaps by replacing L with L or some such.

e A similar convention applies to the Hamiltonian H. When one writes 0H/0qg; it is always understood
that the full variable list is g1, 2, - . - gz, P1, P2, - - - Ps, t, and thus one is thinking of H(q1, qo, - . - ¢z, 1, P2, - - - Ps, ),

and thus
OH OH
5, means | =— (5)
L4 L4 Q1545 —1,5+415---P1ye--Pst

And of course the same variable set is in mind whenever one writes 0H/0p;.

e This is what is behind the insistence of Thornton and Marion that one always write the Hamiltonian as
a function of the ¢’s and p’s, and not of the ¢’s and ¢’s. That is, at this point they are employing Approach
1 to the problem of avoiding confusion when taking partial derivatives.

% Let us see how this works in the case of a simple example: going from a Lagrangian to a Hamiltonian
when there is only 1 degree of freedom, and we are considering a harmonic oscillator

L= L(x, &) = (m/2)i* — (k/2)x* p=0L/i=mi. (6)

o In this case 9L/0t = 0, and there is no harm in simply omitting the ¢ argument from out list.



e Now define “the Hamiltonian” using the formula
H(z,&) = 20L/0i — L = (m/2)i* + (k/2)x?, (7)

where we are being careful to distinguish the function H from the same quantity expressed as a different
function

H(z,p) = p*/2m + (k/2)2* = H(z, i(z,p)). (8)

3 The difference between 0L/0t and dL/dt

% Students of mechanics are often confused about the difference between 0L/0t and dL/dt. They are
very different quantities, and it is important to understand just what is meant in each case. It will suffice to
consider the case where there is a single (generalized) coordinate ¢ with time derivative ¢, and a Lagrangian

L(q,4,t) = (m/2)¢* — (1 + acos bt)kq?, (9)

where k, a and b are constants.

e When considering partial derivatives of L one should take the perspective that all the other arguments
of L are being held fixed when this one is varied. If one were to write L(c, §,7), a function of three real
variables, there would be no doubt at all as to what OL/dvy means: it means the derivative of L with respect
to v with o and 3 held fixed.

o So to find 9L /0t for L in (9) we should hold g and ¢ absolutely constant while carrying out the derivative
with respect to t. Consequently,
OL/0t = abk(sin bt)q>. (10)

o But what does this correspond to physically? Well, it might be that the spring of the harmonic oscillator
is subject to some oscillating draft of air which makes its temperature go up and down, and therefore varies
the spring constant. But surely one would not expect both ¢ and ¢, position and velocity, to remain fixed
while the temperature varied? Indeed, one would not, and this is a case where one should carry out the
math as prescribed by the symbols, and not try and interpret it as a physical process. Instead 9L/0t is a
formal operation.

e Sometimes the situation dL/9t = 0 is described as one in which the Lagrangian has no explicit time
dependence. This terminology is fine if one knows what it means. E.g., because of the cosbt term the
Lagrangian in (9) has an explicit time dependence.

% By contrast, when using the symbol dL/dt we always have in mind a situation where a definite path
q(t) is specified. Given this path, we can of course compute ¢(t), and insert ¢(t) and ¢(¢) into the Lagrangian
as its first two arguments. This way L will (in general) change in time even in the case where 0L/t = 0,
and of course if 9L/0t # 0 this can be yet another source of time dependence.

e Consider (9) with @ = 0: the oscillator will oscillate, and the value of L will oscillate in time, even
though 0L/0t = 0.

O Exercise. Check this by working out dL/dt for L in (9), assuming ¢ = 0 but that the oscillator is not
stationary at the origin.

e Analogy. The elevation at some fixed geographical point in Western Pennsylvania is, to a fairly good
approximation, independent of time. Think of this as the Lagrangian. When you go on a hike, however, and
feed your coordinates into this “Lagrangian,” your elevation will vary with time because your geographical
position is shifting. To be sure, if you have the misfortune of walking over a subsiding coal mine there might
be a dL/0t contribution as well.

% All of this generalizes in an obvious way to the case where there is more than one generalized coordinate.
When calculating OL/0t one must hold every g¢; and every ¢; fixed. When calculating dL/dt one must be



thinking about a collection of functions g;(t), and insert them and their time derivatives as appropriate
arguments in L to determine its time dependence.

% The same comments apply in an obvious way to the difference between 0H /0t and dH/dt, except that
when taking the partial derivative 9H /0t the variables held fixed are the ¢’s and the p’s; see the discussion
in connection with (19) below.

4 Legendre Transformation and Differentials

% The use of differentials speeds up certain formal derivations when one is dealing with functions of
several independent variables, especially if one is changing from one independent set to another. The
approach can be made mathematically rigorous; see Courant. The perspective here is a bit different from
that of Courant, but for our purposes it will work equally well.

% We choose illustrations from thermodynamics, where the use of differentials is common, and focus on
a system with two independent variables, which could be the entropy S and the volume V', or temperature
T and volume V', or S and pressure P, etc. For the following discussion the exact significance of the symbols
is not important. We denote the energy by E, using that in preference to U because U is used by TM for
potential energy. The thermodynamic energy FE is the total kinetic plus potential energy of a system of
particles in thermodynamic equilibrium, in which case E is some well-defined function of S and V', and in

the standard notation one writes
dE=TdS — PdV, (11)

where dF, dS, and dV are examples of differentials. How are we to understand this equation?

e A useful way of understanding it is to suppose that a path is defined in the space of independent
variables S and V by giving each as a function of some parameter ¢, which can be thought of intuitively
as the time, provided nothing is varied so rapidly as to take the system out of thermodynamic equilibrium.
However, it really need not represent the time. All we want is that S and V' are smooth functions of ¢, and
we never allow the path to stop, i.e., for every ¢ either dS/dt or dV/dt is nonzero.

o And how does E vary along this path? Since it is a function of S and V', we write

d _ (0B dS (0B dv 2
dt  \9S), dt oV ) g dt’
using the usual chain rule. This is the same as (11) if we make the identifications
oE oE
T=|—+5 P=—-|(—— 1
(3), r= v, a

and then divide both sides of (11) by dt.

o Hence (11) may be regarded as an abbreviation for (12) and (13) taken together, with the advantage
that it says things in a very compact way. Note in particular that if we choose a path on which V does not
change, the dV term in (11) is equal to zero, and dividing both sides by dS we arrive at the first of the two
relations in (13); likewise by setting d.S equal to zero we arrive at the second term in (13). So we have at
the very least a nice device for memorizing the physical significance of certain partial derivatives without
having to write them out in longhand.

% But the real power of differentials emerges when we change independent variables, as in a Legendre
transformation. Let the Helmholtz free energy be written as

F=E-TS. (14)

Now watch:
dF =dE —-TdS — SdIl' =-58dT — PdV, (15)



where d(T'S) = TdS + SdT is obvious if you divide through by dt, and the second equality in (15) employs
the earlier differential relation (11). From (15) we see at once that if we express F' as a function of T' and

V', then it is the case that
oF oF
s=-(77), (57), 1)

e Whereas one can derive the results in (16) from those in (13), given the definition of F' in (14), in a
moderately straightforward manner by means of chain rule arguments, the use of differentials is faster, and
also good mathematics if one follows Courant, or if one divides through by dt in the manner indicated above.

o There are, to be sure, questions about starting with (13) and solving for S as a single-valued, well-
defined and differentiable function of 7" and V' in order to obtain F' as a function of these variables using
(14). We shall not address these issues here. Courant again has an accessible treatment. Typical physicists
simply go ahead without checking, until they get into trouble.

% Back to mechanics, where with L the Lagrangian we write its differential as

dL = p;di; + Y  (0L/dq;) dg; + (DL/0t) dt, (17)

noting that p; is defined to be 0L/0¢;, so this equation merely summarizes names of partial derivatives, and
tells us that the independent variables we are concerned with are those whose differentials appear on the
right hand side.

e Then we introduce the analog of the thermodynamic E to F' transformation above, except for a sign
change, writing the Hamiltonian as

H=Y pj;— L. (18)
J
Next take its differential:

dH = pjdg;+> qydp; —dL ="y d;dp; — Y _ (9L/dq;) dg; — (OL/0t) dt
i i i

J

= qu dpj — ij dqj — (8L/8t) dt (19)

where the second equality employs (17) and the final one invokes the Lagrange equations 0L/0q; = dp,/dt.
The right side of (19) at once identifies the significance of the partial derivatives of H when written as a
function of the ¢’s and p’s. It is actually a compact way of writing the Hamiltonian equations of motion,
and has the advantage that it leaves us in no doubt about which variables are being held fixed when we take
partial derivatives. It also tells us that 0H/0t = —9L/0t.

5 Quadratic Kinetic Energy

% The transformation from a Lagrangian to a Hamiltonian is particularly simple in a situation in which
one can write the Lagrangian in the form

L(G,qt) =T -U=3Y Aj(@ )44 — UG, 1), (20)
jk

which is to say the kinetic energy is quadratic in the ¢; and the potential energy is independent of the ¢;.
We assume that the matrix A is symmetrical

Ajk = Akj or AT = A. (21)



e The notation AT means the transpose of the matrix A. Students who have not seen matrices in linear
algebra, or have forgotten the material, are referred to App. A for a fast review.

o Note that A;,(q,t) is allowed to depend on some of the ¢;’s and ¢, but does not have to. The key
point is that it does not depend upon any of the ¢;; the dependence of L on the ¢; can only be that shown
explicitly in (20). Similarly, U is allowed to depend on the ¢; and ¢, but cannot depend on any g, .

% A consequence of (20) is

pj = 0L/0G; = 0T/d¢; =Y Ajrr, or p=A-q, (22)
k

where the second form, p = A - ¢, is to be understood in terms of matrix multiplication, with ¢ a column
vector, A a square matrix, and p another column vector. (Again, see App. A if this is not familiar.)

o The matrix product A - ¢ is often written as simply Aq, and we omit the connecting - in (23) and (24)
below.

e Notice that when we differentiate the expression for 7' the factor % no longer appears in (22). This is
correct. To see that it is correct look at an example or two using a small matrix, and remember (21).

% If the matrix A is invertible with inverse A=!, (22) implies that ¢ and p, again understood as column

vectors, are related by
g=A""p (23)

e Therefore we can write the kinetic energy in the form

T=3¢"Ag=3p" AT AA  p=1p" A p = 1) (A7) jkpipk- (24)
ik
Here we have used the fact that (BC)T = CTBT for a matrix product, including the case where B or C' is

a row or column vector, see App. A; also (AT)™! = (A=HT for an invertible square matrix A; and AT = A,
(21), for the particular matrix A we are interested in.

% Thus the Hamiltonian expressed in terms of its standard set of independent variables is
H(@pt)=T+U=3p"A " p+U(q.1), (25)

where A~! will depend on ¢ and t if A depends on these quantities.

e Therefore when the Lagrangian has the form (20)—which is frequently but not always the case—we
have a quick recipe for getting the Hamiltonian as a function of ¢ and p, the form that’s useful when using
it to obtain the equations of motion.

O Exercise. Fill in the spaces [...] in the following statement: Provided the Hamiltonian H (g, p,t) is of
the form [...], one can obtain from it the corresponding Lagrangian L({, 7, t) by the simple device of finding
the matrix inverse of [...] and then writing L in the form |[...].

6 Flows in phase space. Liouville’s theorem

% Phase space. It is customary to refer to the 2s-dimensional space of Hamiltonian mechanics, spanned
by (q1,q2,---qs,P1, P2, ---Ps) = (¢, ), as phase space in contrast to the s-dimensional configuration space of
the Lagrangian formulation. A point in this phase space moves in time with a “velocity” vector

6:(q.l,(an"'qsaplap%"'ps):((?a@a (26)

which has 2s components. The velocity at any point in phase space is determined by the Hamilton equations

of motion:
qj' = 8H/8pj, ;i)j = *aH/aqj' (27)



As the velocity is well-defined, a point in phase space representing the mechanical state of a system at some
time to follows a well-defined “trajectory” at all later (and earlier) times.

o As an example, consider a harmonic oscillator, where the trajectories are ellipses centered on the origin
of the 2-dimensional (s = 1) phase space.

% Let R be some collection of points in the phase space which constitute a region with well-defined
boundaries. Then its “volume” can be written as a 2s-dimensional integral

V(R) = / dq1 dgs - - - dgs dpy dps - - - dp, (28)
R

% Of course the collection of all the points that are in a region R at time tg will at some later time ¢;
be found in some other region R; determined by solving the equations of motion. Liouville’s theorem states
that

V(Ro) = V(Ry), (29)

whatever the initial region Ry—assuming, of course, that the integral in (28) is well-defined—and whatever
the times tg and t;.

o This is even true when the Hamiltonian is a function of time.

% One way of stating Liouville’s theorem is as follows. The time transformation from ¢q to t; produces
an invertible map of the phase space onto itself. Associated with this map is a Jacobian. What Liouville
says is that this Jacobian is equal to 1.

e For a proper mathematical proof of Liouville’s theorem from this perspective see Gallavotti.

% The essential geometrical idea behind Liouville’s theorem can be stated in the following way: the
velocity ¥ defined in (26) as a function of position in the phase space, i.e., ¥({, p), has zero divergence

. 9q; | Op,
V’UZZ(aqj-l—J):O. (30)

7 Op;

O Exercise. Carry out the proof of (30). Consider a particular j in the sum, and use the fact that
0*H/q;0p; = 0>H/0p;0q;.

e An incompressible fluid has a velocity field (in 3 dimensions) with zero divergence. And of course if
the particles of such a fluid occupy a region Rj at time ty they will occupy a region R; of equal volume at
time t1, or else the density would be different. Liouville is the 2s-dimensional generalization of this, and one
often says that the flow in phase space of a mechanical system with a Hamiltonian is “incompressible.”

% The perspective in TM is slightly different, and can be thought of in the following way. Suppose one
has an enormous number of identical mechanical systems—same phase space, same Hamiltonian—but with
different initial conditions. Then it is plausible that one can assign a “density” p, i.e., a number per unit
“yolume” in the phase space in the sense of (28) Given density and velocity in the phase space, we form the
current density J

=

J = pv, (31)

This is the analog of a mass current density in fluid dynamics. Since the total number of systems represented
by points in the phase space does not change as a function of time, we expect J to satisfy a conservation law

dp/ot = -V - J, (32)

which is the analog of mass conservation in a fluid, including the compressible kind. Charge conservation in
electricity leads to the same type of equation. Thus we expect (but have not proved) that an equation of
the form (32) will also hold in phase space.



o Indeed, Eqn. (7.195) on p. 277 of TM is precisely (32), and is correct, as are the conclusions they draw
later down on that page. Their derivation of Eqn. (7.195), on the other hand, is badly flawed, even by the
standards of physicists.

% The final result in TM, their (7.198),
dp/dt =0, (33)

is to be interpreted in the following way. Think of p as a function of the ¢’s and p’s, p(q,p,t). Then given
q(t) and p(t) as functions of time on some phase space trajectory that satisfies the equations of motion, one
can insert these in p, and p(q(t), p(t),t) is, somewhat surprisingly, independent of time. Even though dp/0t
at some fixed point in phase space will in general depend on the time.

o One thinks of the group of 40 wealthy retired folk from Philadelphia who went together on a trip around
around the world and were surprised to find American tourists everywhere they went.

e The result (33) is, at least intuitively, equivalent to Liouville’s theorem in the form (29). The reason
is that if phase space volume is preserved as time progresses, the number of points representing different
systems in the region Ry will be the same as the number of points in Ry, and since density p is number per
unit volume, the density will remain fixed. Conversely, if one knows that p is fixed as a function of time
in the sense of (33), i.e., in the vicinity of a point moving in phase space in accordance with Hamilton’s
equations, then the volume occupied by a set of points must remain fixed.

A Appendix. Matrices and column/row vectors

% A matrix is a square or rectangular array of numbers (or symbols, etc.) with m rows and n columns.
The elements of a matrix M are labeled by subscripts, e.g., M, where the first, j, labels the row and the

second, k, the column. Thus
1 0 2
M= (3 -35 16) (34)

is a matrix with M11 = ]., Mlg = 0, M13 = 2, M21 = 3, M22 = 73.5, M23 = 16.

e Sometimes row and columns are labeled (indexed) starting with 0 instead of with 1. People who use
such labels or indexing would say that Moy =1, My, =0, ... Mo = 16.

e If n = 1, one column, the matrix is referred to as a column vector of dimension m, i.e., it has m
elements. If m = 1, only one row, the matrix is called a row vector of dimension n.

% An important operation on matrices is the transpose, denoted by M™. This consists of interchanging
rows and columns so that the first row of M is the first column of M, the second row is the second column,
etc. Thus for the example in (34),

1 3
MT=[0 -35 (35)
2 16

e The transpose of a column vector is a row vector and vice versa.

e Transposing the transpose results in the original: (MT)T = M.

% Matrices can be multiplied; this is perhaps their most important property. Thus if A is an m X n
matrix and B is an n X p matrix, C' = A - B or simply AB with no separating dot, is the m x p matrix

Cji =Y AjBy (36)
k=1

e Note that multiplication is only defined when the number of columns of the first factor is equal to the
number of rows of the second. Let us call this compatibility. In what follows we will assume multiplication
involves compatible matrices.



e Matrix multiplication is associative, A - (B-C) = (A - B) - C, but is noncommutative: in general A - B
and B - A are not the same. Order is important!

e Transpose of a product
(A-B)T =BT. AT (37)
O Exercise. Prove it. Find the corresponding expression for (A - B - C)T.
% Let A be a matrix, ¢ a column vector and r a row vector. Then A - ¢ is a column vector, r- A is a row
vector, r - ¢ is a single number (1 x 1 matrix), and the matrix ¢ - r is called a dyad.
O Exercise. What are the compatibility conditions for each of the operations just mentioned?
O Exercise. How big is the dyad in terms of the dimensions of ¢ and 7?7

% One is often interested in square matrices of a given size, say n X n. A very important square matrix
is the identity I defined by

1 0 ... 0O
1 ... 0

I]‘k :§jk or = . . . . (38)
00 ... 1

It has the property that I - A= A -1 = A for any n X n square matrix A.

% If for a square matrix M there exists another matrix IV of the same size such that
N-M=1, M-N=1, (39)

N is called the inverse of M, and M is the inverse of N. Often one writes N = M 1.

e An N which satisfies the first of these two equations is called a left inverse, and one that satisfies the
second equation a right inverse. In the case of square matrices a left inverse is always a right inverse and
vice versa. Furthermore the inverse, if it exists, is unique.

% Not all square matrices have inverses. If M has an inverse it is said to be invertible or nonsingular; if
there is no inverse it is said to be singular.

O Exercise. A matrix all of whose elements are zero has no inverse. Prove this, and then give a less
trivial example of a singular 2 x 2 matrix.

% The inverse of a 1 x 1 matrix (r) is (1/r) if a # 0. A 2 x 2 matrix has an inverse

(0 - (D) »

provided the determinant ad — bc is not zero.

O Exercise. Check this by working out the product of this matrix with its inverse.

e An n x n matrix M has an inverse if and only if its determinant is nonzero. The topic of determinants
lies outside the scope of these notes.

e Whereas formulas comparable to (40) exist for 3 x 3, 4 x 4, ... matrices, they are rather unwieldy, and
it is often better to have your computer find the inverse.

% The inverse of a product of several square matrices exists if and only if each individual matrix is
nonsingular. The inverse of a product is given by the product of the inverses in reverse order:

(A-B-C---Z)yt=z"1...p7t. AL, (41)

O Exercise. Prove it.
O Exercise. Show that (A=1)T = (A1)~ if A is invertible.



