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Phase Plots 
 
When a particle moves along the  x  axis, we often represent the motion as a graph of  the 
coordinate  x  or the velocity  v = dx/dt  as a function of time  t.  A different but very useful 
representation is to plot the instantaneous position  x  and velocity  v  of the particle as a point in 
a plane called the phase plane, with horizontal and vertical axes representing  x(t)  and  v(t),  
respectively.  Such a plot is called a phase plot.  Each point in the  x-v  phase plane represents 
an instantaneous state of motion (position and velocity) of the system.  As the motion 
progresses, the representative point  (the  phase point) traces out a path called the phase 
trajectory in the phase plane. 
 
A simple example is the phase plot for  the undamped, undriven harmonic oscillator.  The total 
energy  E  of the system is constant, and conservation of energy gives the equation 
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2mv kx E+ = = constant.  (1) 

The graph of this equation in the  x-v  plane (i.e., the phase plot) is an ellipse.  As the motion 
evolves in time, the phase point moves around this ellipse, tracing out the phase plot once each 
cycle.  It always moves in the  clockwise  sense;  can you see why?  For every periodic 
motion, the phase plot is a closed curve that is traced out once each cycle.   
 
When damping is present,  the motion is not strictly periodic. The phase trajectory is no longer a 
closed curve but a spiral that curves into the origin as the motion dies down. 
 
If the equation of motion (from  ΣF = ma)  can be solved exactly, it is easy to plot the phase 
trajectory.  For the undamped harmonic oscillator, one solution is 

 x A t= cos ωo . (2) 

For an underdamped oscillator, one solution is   

 x Ae tt= −γ ωcos .d  (3) 

Taking  A = 1,  ωo = 1,  and  γ = 0.1,  we obtain the phase plots shown below. 
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For a system in which the total force depends only on  x  and  v,  that is,  F(x,v),  knowing a 
single point  (xo, vo) on the phase trajectory is always sufficient to determine the entire 
trajectory, and hence the entire motion of the particle.  To see why this is so, we note that the 
equation of motion obtained from Newton's second law  (ΣF = ma),  can always be 
represented in terms of two coupled first-order equations in  x  and v,  namely,   

 
dx
dt

v
dv
dt m

F x v= =and
1

( , )  (4) 

If the values of  x  and  v  at one instant are known, the change in each quantity during the 
following small time interval  ∆t  can be computed:        

 ∆ ∆ ∆ ∆ ∆ ∆x
dx
dt

t v t v
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dt
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t= = = =      and      
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In this way the position of a neighboring point on the phase trajectory can be computed. By 
iterating this process, we can construct the entire trajectory.  By making  ∆t  very small, we can 
compute the trajectory with as great precision as we like (with some significant exceptions).  In 
fact, this is the basic idea behind numerical solution of differential equations, using Maple or 
similar systems. 
 
The phase trajectory is a convenient way to represent general features of the motion. The 
possible phase trajectories can have various shapes.  If the trajectory is a closed curve, as with 
the undamped oscillator, the resulting motion is periodic.  The trajectory of an underdamped 
oscillator spirals in asymptotically (at large t) toward the fixed point   
(x = 0,  v = 0),  independently of initial conditions.  Such a point is called an attractor.  
 
A system can have more than one attractor; an example is a particle in a two-well potential-
energy function, with two attractors.  Which attractor represents the final state depends on initial 
conditions, and the choice can be very sensitive to small changes in initial conditions.  Each 
attractor corresponds to a range of initial conditions, a region in phase space that is called a 
basin of attraction. 
 
The attractor need not be a point or a set of points.  Suppose the damping force is given by  F 
= av − bv3,  where  a and  b  are positive constants.  For large  v,  F is opposite to  v  and is a 
damping force.  But when  v  is small,  F  has the same direction as  v and tends to build up the 
oscillations.  In this case the motion approaches a periodic motion that is independent of initial 
conditions and in which, on the average over a cycle, the two damping terms cancel out.  This 
final steady-state oscillation is called a limit cycle  or  limit-cycle attractor.   
 
Vector Field Plots 
 
At any point in the phase plane, the direction of a trajectory passing through that point is 
determined by Eqs. (5).  We can think of  ∆x  and  ∆v  as the components of a vector in the  x-
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v  phase plane.  At each point this vector must be tangent to the trajectory passing through the 
point.  Usually, in order to avoid undue clutter on the phase plane, we plot a unit vector at each 
point in a grid of representative points, showing the direction of a phase trajectory passing 
through each point.  This representation is called a vector field plot,  or simply a  field plot. 
 
A simple example is the field plot for undamped simple harmonic motion.  Equations (5) take 
the form 

 ∆ ∆ ∆ ∆x v t v
k
m

x t= = −,  (6) 

For simplicity, we take  k = 1,  m = 1;   then  

 ∆ ∆ ∆ ∆x v t v x t= = −, . (7) 

Here is a vector field plot (made with Maple) for this simple motion. 

An important feature of vector field plots is that they can be obtained without actually solving 
the differential equations.  This is particularly useful when solutions cannot be expressed in 
closed form but have to be obtained by numerical approximation.  The vector field plot can 
always be obtained from Eqs. (5) and used to understand general features of the motion. 
 
To compute a unit vector on a vector field plot,  we introduce the unit vectors  $ $i jand  
in the horizontal and vertical directions, respectively, in the phase plane.  Then, from Eqs. (5), 
the vector that represents the displacement of the representative point in the phase plane during 
time  ∆t  is 

  $ $ $ $ ( , )
.i j i j∆ ∆ ∆ ∆x v v t

F x v
m

t+ = +  (8) 

To obtain a unit vector  $n   in the direction of this vector, we divide it by its magnitude, 
which is the square root of the sum of squares of components.  From Eqs. (5), 
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 $ $ ( ) ( , ) .i j∆ ∆ ∆ ∆x v v t F x v t m+ = +2 2
 

Thus the unit vector  $n   at each point  (x, v)  in the phase plane is given by 

 $
$ $ ( , )

( , ) /
.n

i j= +

+

v F x v m

v F x v m2 2
 (9) 

Using this, we can compute the components of  $n   for any point  (x, v)  in the phase plane, and 
hence construct the field plot.  Note again that we have not solved the differential equations for  
x(t)  and  v(t);  all that is needed to construct the field plot is the function  F(x, v). 
 
Once we have the field plot, we can sketch out a phase trajectory (representing a 
possible motion of the system) for any initial conditions  (xo, vo), represented by 
the starting point in the phase plane.  We just start at  (xo, vo)  and sketch a curve 
that is tangent to the unit vector  $n   at each point.  In the above example, it is easy to see that 
the phase trajectories are concentric circles. 
 
Note that a phase trajectory can never cross itself.  At each point  (x, v)  in the phase plane, the 
direction of the unit vector  $n   is determined by the values of  x  and  v,  according to Eq. (9).   
 
 
Time-Dependent Forces 
 
The total force acting on the particle may depend on time; then we denote it as  F(x, v, t).  A 
familiar example is the damped, sinusoidally driven harmonic oscillator, for which 

 F x v t kx bv F t( , , ) cos .= − − − o ω  (10) 

The spring force depends on  x,  the damping force depends on  v,  and the driving force 
depends on  t.  In this case,  Eq. (9) must be rewritten as 

 $
$ $ ( , , )

( , , )/
.n

i j= +

+

v F x v t m

v F x v t m2 2
 (11) 

The unit vector  $n   at each point in the phase plane now varies with time, and a phase trajectory 
can cross itself.  Suppose that at a certain time the phase point is at  (x1,v1),  and then it returns 
to this same point at a later time;  x  and  v  are the same as before, but  t  is different, and the 
unit vector given by Eq. (11) may have a different direction.  If so, the phase trajectory crosses 
itself at this point.  Later we will see examples of driven oscillations where the driving force is 
periodic but the resulting motion is chaotic, with a phase plot that is a tangled phase trajectory 
with many crossings.  
 
When a periodic driving force is present, the forced-oscillation motion of the system may, in the 
limit of large  t,  approach a periodic motion that is independent of initial conditions.  Such a limit 
is represented as a closed curve on the phase plot, and it is again called a limit cycle.  The 
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phase plot may be a curve that spirals in or out, asymptotically approaching the limit-cycle 
curve.  A limit cycle is also considered to be an attractor.  There may be more than one possible 
limit cycle, as with the two-well potential.  In such a case, initial conditions determine which limit 
cycle represents the final state of motion, and again the choice can be very sensitive to small 
changes in initial conditions. 
 
In some cases where there is a periodic driving force, the resulting forced oscillation is not 
periodic.  In such cases, the phase trajectory does not approach a limit cycle, but wanders 
around the phase plane.  The details of the trajectory may depend very critically on the initial 
conditions, and predicting the long-term motion of the system is impossible.  Such motion is said 
to be chaotic.  The study of chaos is a topic of great current interest, with applications in many 
areas of physics, such as turbulent flow, phase transitions, and others. 
 
 
Phase Plots with Maple 
 
For systems where the differential equation (from  ΣF = ma)  can be solved exactly,  
it is easy to make phase plots using the parametric form of the Maple  plot  command.  Here's 
an example.  The differential equation for the damped harmonic oscillator is 

 && && .x x x+ + =2 02γ ωo  (12) 

If the system is underdamped, then one solution is 

 x Ae tt= −γ ωcos .d  (13) 

As with any Maple plot, we need to substitute specific numerical values for the parameters.  
Suppose we choose  A = 1,  ωd = 1, and  γ = 0.1.  You can verify that this corresponds 
approximately to the initial conditions  (at time t = 0)  xo = 1,  vo = −0.1.  To plot the phase plot 
for the interval  t = 0  to  6π ,  corresponding to three cycles of the damped oscillation, a 
possible Maple scheme would be 

 restart; 
 x := exp(−0.1*t)*cos(t); 
 v := diff(x, t); 
 plot([x, v, t = 0..6*Pi]); 

If the differential equation has to be solved numerically, then we have to use  odeplot.  
Suppose we choose to solve Eq. (12) numerically, using the same numerical values as above.  
The Maple code goes like this: 

 restart; 
 with(plots, odeplot); 
 diffeq := diff(x(t), t$2)  +  0.2*diff(x(t), t)  +  x(t)  = 0; 
 init1 := x(0) = 1; 
 init2 := D(x)(0) = -0.1; 
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 solution := dsolve({diffeq, init1, init2}, x(t), numeric); 
 odeplot(solution, [x(t), diff(x(t), t)], 0..6*Pi); 

The range of values of  t  is not inside the square brackets, and it is stated as  0..6*Pi,  not  t = 
0..6*Pi.  This is because Maple treats  solution  as a function, not an expression. 
If you're using an older version of Maple, this plot may look a little lumpy.  To smooth it out, 
plot more points than the default number (usually 50) by adding the statement  numpoints = 
100  to the  odeplot  command:   

  odeplot(solution, [x(t), diff(x(t), t)], 0..6*Pi, numpoints = 100); 

The newer versions of Maple do this automatically. 

 
Vector Field Plots with Maple 
 
Maple has a very useful and easy facility for creating vector field plots.  It is called dfieldplot.  
It is part of a package called DEtools, and (like some of the facilities in the 
plots  package) it has to be loaded explicitly by using 

 with(DEtools, dfieldplot); 

Here's how it works.  Suppose you have two coupled first-order equations: 

 
dx
dt

f x v
dv
dt

g x v= =( , ), ( , ),  (14) 

where  f(x, v)  and g(x, v)  are known functions.  First give the equations names, such as 

 eq1 := diff(x(t), t) = f(x,v); 

 eq2 := diff(v(t), t) = g(x,v); 

Then the syntax for  dfieldplot  is 

 dfieldplot({eq1, eq2}, [x(t),v(t)], t = 0..5, x = a..b, v = c..d); (15) 

The equations are enclosed in curly brackets because they are a set.    x(t)  and  v(t)  are 
enclosed in square brackets because they are a list.  (They are the coordinates in phase space, 
and the order designates which is on the horizontal axis and which on the vertical.)  The ranges 
of values for  x  and  v  are shown in the usual way.  Maple also insists on a range of values for  
t,  which is irrelevant for our problem because  f(x,v)  and  g(x,v)  aren't functions of  t.  So just 
put in some random values such as  0..5. 
 
The default grid of unit vectors is  20 × 20.  You can change that with the optional statement at 
the end:  dirgrid = [30, 30]  or however many points you want in the grid.  You can also use 
the usual plot options such as  color = black and the various title statements. 
 

Example:  The code used to create the example vector field plot above is 
 
 restart; 
 with(DEtools, dfieldplot); 
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 eq1 := diff(x(t), t) = v(t); 
 eq2 := diff(v(t), t) = −x(t); 
 dfieldplot({eq1, eq2}, [x(t), v(t)], t = 0..2, x = −5..5, v = −5..5,  
  dirgrid = [30, 30],  color = black); 
To get a vector field plot for the damped oscillation problem discussed earlier,  just add the 
term  −0.2*v(t)  to  the right side of  eq2.  Do you see why this is the right thing to do?  Note 
that the arrows and phase trajectories now spiral in toward the origin. 
 
The functions  f  and  g  in Eqs. (14)  may also contain time  t  explicitly.  In this case the 
dfieldplot  command, Eq. (15) must include the actual range of values of  t of interest. 
 
 
Superimposing Plots 
 
Sometimes it’s useful to superimpose two plots, e.g., a vector field plot and a phase trajectory.  
To do this you first create what are called plot structures.  As an example, to make a plot 
structure for a field plot such as Eq. (15), choose numerical values for  a,  b,  c,  and  d,  and 
use 
 
  plot1 :=dfieldplot({eq1, eq2}, [x(t),v(t)], t = 0..5, x = a..b, v = c..d): 
 
This computes all the data needed for the plot but doesn’t actually display it.  End the statement 
with a colon, rather than a semicolon, to prevent displaying a blizzard of data.  Then to display 
the plot use  display(plot1);  The command  display  is part of the plots package, so it first 
has to be loaded explicitly using  with(plots, display);   
 
The advantage of plot structures is that once you have created them you can superimpose two 
or more plots by asking Maple to display a set of plot structures, such as 
 
 display({plot1, plot2}); 
 
Example:  The following code will produce the field plot shown on p. 6-3  (with red arrows), 
superimposed on a phase plot (in black) for undamped simple harmonic motion with  ω  = 1  
and amplitude  3.  Try it! 
 
 restart; 

 with(DEtools, dfieldplot); 

 with(plots, display); 

 eq1 := diff(x(t), t) = v(t); 

 eq2 := diff(v(t), t) = -x(t); 

 plot1 := dfieldplot({eq1, eq2}, [x(t), v(t)], t = 0..2, x = -5..5, v = -5..5,  
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  dirgrid = [30,30], color = red): 

 plot2 := plot([3*sin(t), 3*cos(t), t = 0..2*Pi], color = black): 

 display({plot1, plot2});             
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